jartine commited on
Commit
ad49cd7
1 Parent(s): 37ba187

Add README.md to repo

Browse files
Files changed (1) hide show
  1. README.md +459 -0
README.md ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license:
5
+ - mit
6
+ tags:
7
+ - llama-2
8
+ - self-instruct
9
+ - distillation
10
+ - synthetic instruction
11
+ model_name: Nous Hermes Llama 2 13B
12
+ base_model: NousResearch/Nous-Hermes-Llama2-13b
13
+ inference: false
14
+ model_creator: NousResearch
15
+ model_type: llama
16
+ prompt_template: 'Below is an instruction that describes a task. Write a response
17
+ that appropriately completes the request.
18
+
19
+
20
+ ### Instruction:
21
+
22
+ {prompt}
23
+
24
+
25
+ ### Response:
26
+
27
+ '
28
+ quantized_by: TheBloke
29
+ ---
30
+
31
+ <!-- header start -->
32
+ <!-- 200823 -->
33
+ <div style="width: auto; margin-left: auto; margin-right: auto">
34
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
35
+ </div>
36
+ <div style="display: flex; justify-content: space-between; width: 100%;">
37
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
39
+ </div>
40
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
42
+ </div>
43
+ </div>
44
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
45
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
46
+ <!-- header end -->
47
+
48
+ # Nous Hermes Llama 2 13B - GGUF
49
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
50
+ - Original model: [Nous Hermes Llama 2 13B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
51
+
52
+ <!-- description start -->
53
+ ## Description
54
+
55
+ This repo contains GGUF format model files for [Nous Research's Nous Hermes Llama 2 13B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b).
56
+
57
+ <!-- description end -->
58
+ <!-- README_GGUF.md-about-gguf start -->
59
+ ### About GGUF
60
+
61
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
62
+
63
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
64
+
65
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
66
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
67
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
68
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
69
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
70
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
71
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
72
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
73
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
74
+
75
+ <!-- README_GGUF.md-about-gguf end -->
76
+ <!-- repositories-available start -->
77
+ ## Repositories available
78
+
79
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-AWQ)
80
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GPTQ)
81
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF)
82
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
83
+ <!-- repositories-available end -->
84
+
85
+ <!-- prompt-template start -->
86
+ ## Prompt template: Alpaca
87
+
88
+ ```
89
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
90
+
91
+ ### Instruction:
92
+ {prompt}
93
+
94
+ ### Response:
95
+
96
+ ```
97
+
98
+ <!-- prompt-template end -->
99
+ <!-- licensing start -->
100
+ ## Licensing
101
+
102
+ The creator of the source model has listed its license as `['mit']`, and this quantization has therefore used that same license.
103
+
104
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
105
+
106
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Nous Research's Nous Hermes Llama 2 13B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b).
107
+ <!-- licensing end -->
108
+ <!-- compatibility_gguf start -->
109
+ ## Compatibility
110
+
111
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
112
+
113
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
114
+
115
+ ## Explanation of quantisation methods
116
+ <details>
117
+ <summary>Click to see details</summary>
118
+
119
+ The new methods available are:
120
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
121
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
122
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
123
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
124
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
125
+
126
+ Refer to the Provided Files table below to see what files use which methods, and how.
127
+ </details>
128
+ <!-- compatibility_gguf end -->
129
+
130
+ <!-- README_GGUF.md-provided-files start -->
131
+ ## Provided files
132
+
133
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
134
+ | ---- | ---- | ---- | ---- | ---- | ----- |
135
+ | [nous-hermes-llama2-13b.Q2_K.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
136
+ | [nous-hermes-llama2-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
137
+ | [nous-hermes-llama2-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
138
+ | [nous-hermes-llama2-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
139
+ | [nous-hermes-llama2-13b.Q4_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
140
+ | [nous-hermes-llama2-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
141
+ | [nous-hermes-llama2-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
142
+ | [nous-hermes-llama2-13b.Q5_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
143
+ | [nous-hermes-llama2-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
144
+ | [nous-hermes-llama2-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
145
+ | [nous-hermes-llama2-13b.Q6_K.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
146
+ | [nous-hermes-llama2-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
147
+
148
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
149
+
150
+
151
+
152
+ <!-- README_GGUF.md-provided-files end -->
153
+
154
+ <!-- README_GGUF.md-how-to-download start -->
155
+ ## How to download GGUF files
156
+
157
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
158
+
159
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
160
+ - LM Studio
161
+ - LoLLMS Web UI
162
+ - Faraday.dev
163
+
164
+ ### In `text-generation-webui`
165
+
166
+ Under Download Model, you can enter the model repo: TheBloke/Nous-Hermes-Llama2-GGUF and below it, a specific filename to download, such as: nous-hermes-llama2-13b.q4_K_M.gguf.
167
+
168
+ Then click Download.
169
+
170
+ ### On the command line, including multiple files at once
171
+
172
+ I recommend using the `huggingface-hub` Python library:
173
+
174
+ ```shell
175
+ pip3 install huggingface-hub>=0.17.1
176
+ ```
177
+
178
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
179
+
180
+ ```shell
181
+ huggingface-cli download TheBloke/Nous-Hermes-Llama2-GGUF nous-hermes-llama2-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
182
+ ```
183
+
184
+ <details>
185
+ <summary>More advanced huggingface-cli download usage</summary>
186
+
187
+ You can also download multiple files at once with a pattern:
188
+
189
+ ```shell
190
+ huggingface-cli download TheBloke/Nous-Hermes-Llama2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
191
+ ```
192
+
193
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
194
+
195
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
196
+
197
+ ```shell
198
+ pip3 install hf_transfer
199
+ ```
200
+
201
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
202
+
203
+ ```shell
204
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Nous-Hermes-Llama2-GGUF nous-hermes-llama2-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
205
+ ```
206
+
207
+ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
208
+ </details>
209
+ <!-- README_GGUF.md-how-to-download end -->
210
+
211
+ <!-- README_GGUF.md-how-to-run start -->
212
+ ## Example `llama.cpp` command
213
+
214
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
215
+
216
+ ```shell
217
+ ./main -ngl 32 -m nous-hermes-llama2-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
218
+ ```
219
+
220
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
221
+
222
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
223
+
224
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
225
+
226
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
227
+
228
+ ## How to run in `text-generation-webui`
229
+
230
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
231
+
232
+ ## How to run from Python code
233
+
234
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
235
+
236
+ ### How to load this model from Python using ctransformers
237
+
238
+ #### First install the package
239
+
240
+ ```bash
241
+ # Base ctransformers with no GPU acceleration
242
+ pip install ctransformers>=0.2.24
243
+ # Or with CUDA GPU acceleration
244
+ pip install ctransformers[cuda]>=0.2.24
245
+ # Or with ROCm GPU acceleration
246
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
247
+ # Or with Metal GPU acceleration for macOS systems
248
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
249
+ ```
250
+
251
+ #### Simple example code to load one of these GGUF models
252
+
253
+ ```python
254
+ from ctransformers import AutoModelForCausalLM
255
+
256
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
257
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Nous-Hermes-Llama2-GGUF", model_file="nous-hermes-llama2-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
258
+
259
+ print(llm("AI is going to"))
260
+ ```
261
+
262
+ ## How to use with LangChain
263
+
264
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
265
+
266
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
267
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
268
+
269
+ <!-- README_GGUF.md-how-to-run end -->
270
+
271
+ <!-- footer start -->
272
+ <!-- 200823 -->
273
+ ## Discord
274
+
275
+ For further support, and discussions on these models and AI in general, join us at:
276
+
277
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
278
+
279
+ ## Thanks, and how to contribute
280
+
281
+ Thanks to the [chirper.ai](https://chirper.ai) team!
282
+
283
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
284
+
285
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
286
+
287
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
288
+
289
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
290
+
291
+ * Patreon: https://patreon.com/TheBlokeAI
292
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
293
+
294
+ **Special thanks to**: Aemon Algiz.
295
+
296
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
297
+
298
+
299
+ Thank you to all my generous patrons and donaters!
300
+
301
+ And thank you again to a16z for their generous grant.
302
+
303
+ <!-- footer end -->
304
+
305
+ <!-- original-model-card start -->
306
+ # Original model card: Nous Research's Nous Hermes Llama 2 13B
307
+
308
+
309
+ # Model Card: Nous-Hermes-Llama2-13b
310
+
311
+ Compute provided by our project sponsor Redmond AI, thank you! Follow RedmondAI on Twitter @RedmondAI.
312
+
313
+ ## Model Description
314
+
315
+ Nous-Hermes-Llama2-13b is a state-of-the-art language model fine-tuned on over 300,000 instructions. This model was fine-tuned by Nous Research, with Teknium and Emozilla leading the fine tuning process and dataset curation, Redmond AI sponsoring the compute, and several other contributors.
316
+
317
+ This Hermes model uses the exact same dataset as Hermes on Llama-1. This is to ensure consistency between the old Hermes and new, for anyone who wanted to keep Hermes as similar to the old one, just more capable.
318
+
319
+ This model stands out for its long responses, lower hallucination rate, and absence of OpenAI censorship mechanisms. The fine-tuning process was performed with a 4096 sequence length on an 8x a100 80GB DGX machine.
320
+
321
+ ## Example Outputs:
322
+ ![Example4](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example5.png "Example 4")
323
+ ![Example1](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/Example1.png "Example 1")
324
+ ![Example2](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example2.png "Example 2")
325
+ ![Example3](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example3.png "Example 3")
326
+
327
+ ## Model Training
328
+
329
+ The model was trained almost entirely on synthetic GPT-4 outputs. Curating high quality GPT-4 datasets enables incredibly high quality in knowledge, task completion, and style.
330
+
331
+ This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below
332
+
333
+ ## Collaborators
334
+ The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art, and Redmond AI.
335
+
336
+ Special mention goes to @winglian for assisting in some of the training issues.
337
+
338
+ Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly.
339
+
340
+ Among the contributors of datasets:
341
+ - GPTeacher was made available by Teknium
342
+ - Wizard LM by nlpxucan
343
+ - Nous Research Instruct Dataset was provided by Karan4D and HueminArt.
344
+ - GPT4-LLM and Unnatural Instructions were provided by Microsoft
345
+ - Airoboros dataset by jondurbin
346
+ - Camel-AI's domain expert datasets are from Camel-AI
347
+ - CodeAlpaca dataset by Sahil 2801.
348
+
349
+ If anyone was left out, please open a thread in the community tab.
350
+
351
+ ## Prompt Format
352
+
353
+ The model follows the Alpaca prompt format:
354
+ ```
355
+ ### Instruction:
356
+ <prompt>
357
+
358
+ ### Response:
359
+ <leave a newline blank for model to respond>
360
+
361
+ ```
362
+
363
+ or
364
+
365
+ ```
366
+ ### Instruction:
367
+ <prompt>
368
+
369
+ ### Input:
370
+ <additional context>
371
+
372
+ ### Response:
373
+ <leave a newline blank for model to respond>
374
+
375
+ ```
376
+
377
+ ## Benchmark Results
378
+ AGI-Eval
379
+ ```
380
+ | Task |Version| Metric |Value | |Stderr|
381
+ |agieval_aqua_rat | 0|acc |0.2362|± |0.0267|
382
+ | | |acc_norm|0.2480|± |0.0272|
383
+ |agieval_logiqa_en | 0|acc |0.3425|± |0.0186|
384
+ | | |acc_norm|0.3472|± |0.0187|
385
+ |agieval_lsat_ar | 0|acc |0.2522|± |0.0287|
386
+ | | |acc_norm|0.2087|± |0.0269|
387
+ |agieval_lsat_lr | 0|acc |0.3510|± |0.0212|
388
+ | | |acc_norm|0.3627|± |0.0213|
389
+ |agieval_lsat_rc | 0|acc |0.4647|± |0.0305|
390
+ | | |acc_norm|0.4424|± |0.0303|
391
+ |agieval_sat_en | 0|acc |0.6602|± |0.0331|
392
+ | | |acc_norm|0.6165|± |0.0340|
393
+ |agieval_sat_en_without_passage| 0|acc |0.4320|± |0.0346|
394
+ | | |acc_norm|0.4272|± |0.0345|
395
+ |agieval_sat_math | 0|acc |0.2909|± |0.0307|
396
+ | | |acc_norm|0.2727|± |0.0301|
397
+ ```
398
+ GPT-4All Benchmark Set
399
+ ```
400
+ | Task |Version| Metric |Value | |Stderr|
401
+ |arc_challenge| 0|acc |0.5102|± |0.0146|
402
+ | | |acc_norm|0.5213|± |0.0146|
403
+ |arc_easy | 0|acc |0.7959|± |0.0083|
404
+ | | |acc_norm|0.7567|± |0.0088|
405
+ |boolq | 1|acc |0.8394|± |0.0064|
406
+ |hellaswag | 0|acc |0.6164|± |0.0049|
407
+ | | |acc_norm|0.8009|± |0.0040|
408
+ |openbookqa | 0|acc |0.3580|± |0.0215|
409
+ | | |acc_norm|0.4620|± |0.0223|
410
+ |piqa | 0|acc |0.7992|± |0.0093|
411
+ | | |acc_norm|0.8069|± |0.0092|
412
+ |winogrande | 0|acc |0.7127|± |0.0127|
413
+ ```
414
+ BigBench Reasoning Test
415
+ ```
416
+ | Task |Version| Metric |Value | |Stderr|
417
+
418
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5526|± |0.0362|
419
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.7344|± |0.0230|
420
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.2636|± |0.0275|
421
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.0195|± |0.0073|
422
+ | | |exact_str_match |0.0000|± |0.0000|
423
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2760|± |0.0200|
424
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2100|± |0.0154|
425
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4400|± |0.0287|
426
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.2440|± |0.0192|
427
+ |bigbench_navigate | 0|multiple_choice_grade|0.4950|± |0.0158|
428
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5570|± |0.0111|
429
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.3728|± |0.0229|
430
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1854|± |0.0123|
431
+ |bigbench_snarks | 0|multiple_choice_grade|0.6298|± |0.0360|
432
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.6156|± |0.0155|
433
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.3140|± |0.0147|
434
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2032|± |0.0114|
435
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1406|± |0.0083|
436
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4400|± |0.0287|
437
+ ```
438
+
439
+ These are the highest benchmarks Hermes has seen on every metric, achieving the following average scores:
440
+ - GPT4All benchmark average is now 70.0 - from 68.8 in Hermes-Llama1
441
+ - 0.3657 on BigBench, up from 0.328 on hermes-llama1
442
+ - 0.372 on AGIEval, up from 0.354 on Hermes-llama1
443
+
444
+ These benchmarks currently have us at #1 on ARC-c, ARC-e, Hellaswag, and OpenBookQA, and 2nd place on Winogrande, comparing to GPT4all's benchmarking list, supplanting Hermes 1 for the new top position.
445
+
446
+ ## Resources for Applied Use Cases:
447
+ Check out LM Studio for a nice chatgpt style interface here: https://lmstudio.ai/
448
+ For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
449
+ For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot
450
+
451
+ ## Future Plans
452
+ We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward.
453
+
454
+ ## Model Usage
455
+ The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.
456
+
457
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
458
+
459
+ <!-- original-model-card end -->