clementchadebec commited on
Commit
ec94579
1 Parent(s): c7be9b2

Upload model

Browse files
Files changed (3) hide show
  1. README.md +195 -80
  2. config.json +20 -0
  3. diffusion_pytorch_model.safetensors +3 -0
README.md CHANGED
@@ -1,83 +1,198 @@
1
  ---
2
- base_model:
3
- - black-forest-labs/FLUX.1-dev
4
  library_name: diffusers
5
- license_name: flux-1-dev-non-commercial-license
6
- license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
7
- pipeline_tag: image-to-image
8
- tags:
9
- - ControlNet
10
  ---
11
- # ⚡ Flux.1-dev: Depth ControlNet ⚡
12
-
13
- This is [Flux.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) ControlNet for Depth map developped by Jasper research team.
14
-
15
- <p align="center">
16
- <img style="width:700px;" src="examples/showcase.jpg">
17
- </p>
18
-
19
- # How to use
20
- This model can be used directly with the `diffusers` library
21
-
22
- ```python
23
- import torch
24
- from diffusers.utils import load_image
25
- from diffusers import FluxControlNetModel
26
- from diffusers.pipelines import FluxControlNetPipeline
27
-
28
- # Load pipeline
29
- controlnet = FluxControlNetModel.from_pretrained(
30
- "jasperai/Flux.1-dev-Controlnet-Depth",
31
- torch_dtype=torch.bfloat16
32
- )
33
- pipe = FluxControlNetPipeline.from_pretrained(
34
- "black-forest-labs/FLUX.1-dev",
35
- controlnet=controlnet,
36
- torch_dtype=torch.bfloat16
37
- )
38
-
39
-
40
- # Load a control image
41
- control_image = load_image(
42
- "https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Depth/resolve/main/examples/depth.jpg"
43
- )
44
-
45
- prompt = "a statue of a gnome in a field of purple tulips"
46
-
47
- image = pipe(
48
- prompt,
49
- control_image=control_image,
50
- controlnet_conditioning_scale=0.6,
51
- num_inference_steps=28,
52
- guidance_scale=3.5,
53
- height=control_image.size[1],
54
- width=control_image.size[0]
55
- ).images[0]
56
- image
57
- ```
58
-
59
- <p align="center">
60
- <img style="width:500px;" src="examples/output.jpg">
61
- </p>
62
-
63
- 💡 Note: You can compute the conditioning map using for instance the `MidasDetector` from the `controlnet_aux` library
64
-
65
- ```python
66
- from controlnet_aux import MidasDetector
67
- from diffusers.utils import load_image
68
-
69
- midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
70
-
71
- # Load an image
72
- im = load_image(
73
- "https://huggingface.co/jasperai/jasperai/Flux.1-dev-Controlnet-Depth/resolve/main/examples/output.jpg"
74
- )
75
-
76
- surface = midas(im)
77
- ```
78
-
79
- # Training
80
- This model was trained with depth maps computed with [Clipdrop's depth estimator model](https://clipdrop.co/apis/docs/portrait-depth-estimation) as well as open-souce depth estimation models such as Midas or Leres.
81
-
82
- # Licence
83
- The licence under the Flux.1-dev model applies to this model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
2
  library_name: diffusers
 
 
 
 
 
3
  ---
4
+
5
+ # Model Card for Model ID
6
+
7
+ <!-- Provide a quick summary of what the model is/does. -->
8
+
9
+
10
+
11
+ ## Model Details
12
+
13
+ ### Model Description
14
+
15
+ <!-- Provide a longer summary of what this model is. -->
16
+
17
+ This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
18
+
19
+ - **Developed by:** [More Information Needed]
20
+ - **Funded by [optional]:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Dataset Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "FluxControlNetModel",
3
+ "_diffusers_version": "0.31.0.dev0",
4
+ "_name_or_path": "/data/checkpoints/flux_controlnet_hf/controlnet_upscaling//",
5
+ "attention_head_dim": 128,
6
+ "axes_dims_rope": [
7
+ 16,
8
+ 56,
9
+ 56
10
+ ],
11
+ "guidance_embeds": true,
12
+ "in_channels": 64,
13
+ "joint_attention_dim": 4096,
14
+ "num_attention_heads": 24,
15
+ "num_layers": 5,
16
+ "num_mode": null,
17
+ "num_single_layers": 0,
18
+ "patch_size": 1,
19
+ "pooled_projection_dim": 768
20
+ }
diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38721fc2581e5bb055e25320a4b915341983ccfa97c62bbc47ad3f0d7e15b52c
3
+ size 7166442536