--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: 2024_08_15_swinv2-base-patch4-window8-256 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8181818181818182 --- # 2024_08_15_swinv2-base-patch4-window8-256 This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4972 - Accuracy: 0.8182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4908 | 1.0 | 87 | 0.4882 | 0.7955 | | 1.0014 | 2.0 | 174 | 0.4972 | 0.8182 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1