File size: 11,693 Bytes
33e4bc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import functools

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2PreTrainedModel, GPT2Config
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from x_transformers import TransformerWrapper, Encoder, Decoder

from models.arch_util import AttentionBlock


class InferenceModel(GPT2PreTrainedModel):
    """
    Implementation of GPT2PreTrainedModel from transformers, which allows us to use their generation library with
    this transformer.
    """
    def __init__(self, model):
        super().__init__(GPT2Config())
        self.transformer = model
        self.context = None

    def parallelize(self, device_map=None):
        # Not implemented.
        pass

    def deparallelize(self):
        # Not implemented.
        pass

    def get_output_embeddings(self):
        assert False, "Unsupported operation."

    def set_output_embeddings(self, new_embeddings):
        assert False, "Unsupported operation."

    def store_context(self, context):
        self.context = context

    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        return {
            "input_ids": input_ids,
            "past_key_values": past,
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
        }

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        assert self.context is not None
        assert inputs_embeds is None  # Not supported by this inference model.
        assert labels is None  # Training not supported by this inference model.
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        hidden_states = self.transformer.decoder(input_ids, context=self.context, return_embeddings=True)
        logits = self.transformer.decoder.transformer.to_logits(hidden_states)

        if not return_dict:
            return (logits, )

        return CausalLMOutputWithCrossAttentions(
            loss=None,
            logits=logits,
            past_key_values=None,
            hidden_states=hidden_states,
            attentions=None,
            cross_attentions=None,
        )

    @staticmethod
    def _reorder_cache(past, beam_idx):
        """
        This function is used to re-order the :obj:`past_key_values` cache if
        :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
        called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past
        )


class ResBlock(nn.Module):
    """
    Basic residual convolutional block that uses GroupNorm.
    """
    def __init__(self, chan):
        super().__init__()
        self.net = nn.Sequential(
            nn.Conv1d(chan, chan, kernel_size=3, padding=1),
            nn.GroupNorm(chan//8, chan),
            nn.ReLU(),
            nn.Conv1d(chan, chan, kernel_size=3, padding=1),
            nn.GroupNorm(chan//8, chan)
        )

    def forward(self, x):
        return F.relu(self.net(x) + x)


class ConditioningEncoder(nn.Module):
    def __init__(self,
                 spec_dim,
                 embedding_dim,
                 attn_blocks=6,
                 num_attn_heads=4,
                 do_checkpointing=False):
        super().__init__()
        attn = []
        self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//4, kernel_size=5, padding=2),
                                  nn.Conv1d(embedding_dim//4, embedding_dim//2, kernel_size=3, padding=1, stride=2),
                                  ResBlock(embedding_dim//2),
                                  nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2))
        for a in range(attn_blocks):
            attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
        self.attn = nn.Sequential(*attn)
        self.dim = embedding_dim

    def forward(self, x):
        h = self.init(x)
        h = self.attn(h)
        return h.mean(dim=2)


class CheckpointedLayer(nn.Module):
    """
    Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
    checkpoint for all other args.
    """
    def __init__(self, wrap):
        super().__init__()
        self.wrap = wrap

    def forward(self, x, *args, **kwargs):
        for k, v in kwargs.items():
            assert not (isinstance(v, torch.Tensor) and v.requires_grad)  # This would screw up checkpointing.
        partial = functools.partial(self.wrap, **kwargs)
        return torch.utils.checkpoint.checkpoint(partial, x, *args)


class CheckpointedXTransformerWrapper(nn.Module):
    """
    Wraps a TransformerWrapper and applies CheckpointedLayer to each layer.
    """
    def __init__(self, checkpoint=True, **xtransformer_kwargs):
        super().__init__()
        self.transformer = TransformerWrapper(**xtransformer_kwargs)

        if not checkpoint:
            return
        for i in range(len(self.transformer.attn_layers.layers)):
            n, b, r = self.transformer.attn_layers.layers[i]
            self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])

    def forward(self, x, **kwargs):
        return self.transformer(x, **kwargs)


class AutoregressiveCodegen(nn.Module):
    def __init__(self, model_dim, depth, num_text_tokens=256, num_mel_tokens=8194, max_text_tokens=4000,
                 max_mel_tokens=4000, dropout=.1):
        super().__init__()

        self.START_TOKEN=8192
        self.STOP_TOKEN=8193
        self.max_mel_tokens = max_mel_tokens
        self.minicoder = ConditioningEncoder(80, model_dim, do_checkpointing=False)
        self.encoder = CheckpointedXTransformerWrapper(
                                  num_tokens=num_text_tokens,
                                  max_seq_len=max_text_tokens,
                                  attn_layers = Encoder(
                                      depth=depth//2,
                                      heads=model_dim//64,
                                      dim=model_dim,
                                      attn_dropout=dropout,
                                      ff_dropout=dropout,
                                      use_rmsnorm=True,
                                      ff_glu=True,
                                      ff_mult=1,
                                      rotary_pos_emb=True,
                                      rel_pos_bias=True,
                                  ))
        self.decoder = CheckpointedXTransformerWrapper(
                                  num_tokens=num_mel_tokens,
                                  max_seq_len=max_mel_tokens,
                                  attn_layers=Decoder(
                                      depth=depth,
                                      heads=model_dim//64,
                                      dim=model_dim,
                                      attn_dropout=dropout,
                                      ff_dropout=dropout,
                                      use_rmsnorm=True,
                                      ff_glu=True,
                                      ff_mult=1,
                                      rotary_pos_emb=True,
                                      rel_pos_bias=True,
                                      cross_attend=True,
                                  ))

    def get_grad_norm_parameter_groups(self):
        return {
            'encoder': list(self.encoder.parameters()),
            'decoder': list(self.decoder.parameters()),
            'minicoder': list(self.minicoder.parameters()),
        }

    def forward(self, text_codes, conditioning_signal, mel_codes, wav_lengths, return_loss=True):
        # Format mel_codes with a stop token on the end.
        mel_lengths = wav_lengths // 1024 + 1
        for b in range(mel_codes.shape[0]):
            mel_codes[b, mel_lengths[b]:] = self.STOP_TOKEN
        mel_codes = F.pad(mel_codes, (0, 1), value=self.STOP_TOKEN)

        # Build the context
        if len(conditioning_signal.shape) != 4:
            conditioning_signal = conditioning_signal.unsqueeze(1)
        cond_embs = []
        for i in range(conditioning_signal.shape[1]):
            cond_embs.append(self.minicoder(conditioning_signal[:, i]))
        cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
        enc_text = self.encoder(text_codes, return_embeddings=True)
        context = torch.cat([cond_emb, enc_text], dim=1)

        # Execute the decoder
        dec_inputs = F.pad(mel_codes, (1,0), value=self.START_TOKEN)[:, :-1]
        dec = self.decoder(dec_inputs, context=context)
        if not return_loss:
            return dec
        loss_mel = F.cross_entropy(dec.permute(0,2,1), mel_codes)
        return loss_mel

    def generate(self, conditioning_signal, text_codes, **hf_generate_kwargs):
        if not hasattr(self, 'inference_model'):
            self.inference_model = InferenceModel(self)

        if len(conditioning_signal.shape) != 4:
            conditioning_signal = conditioning_signal.unsqueeze(1)
        cond_embs = []
        for i in range(conditioning_signal.shape[1]):
            cond_embs.append(self.minicoder(conditioning_signal[:, i]))
        cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
        enc_text = self.encoder(text_codes, return_embeddings=True)
        context = torch.cat([cond_emb, enc_text], dim=1)
        self.inference_model.store_context(context)

        gen = self.inference_model.generate(bos_token_id=self.START_TOKEN, pad_token_id=self.STOP_TOKEN, eos_token_id=self.STOP_TOKEN,
                                            max_length=250, output_attentions=False, return_dict_in_generate=True,
                                            **hf_generate_kwargs)
        return gen.sequences


if __name__ == '__main__':
    codegen = AutoregressiveCodegen(1024, 20)
    codegen.generate(torch.randn((1,80,120)), torch.randint(0,256,(1,200)))
    codegen(torch.randint(0,256, (2,200)),
            torch.randn(2,80,120),
            torch.randint(0,8192, (2,350)),
            torch.tensor([192,350]))