|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import einsum |
|
from x_transformers import Encoder |
|
|
|
from models.arch_util import CheckpointedXTransformerEncoder |
|
from models.transformer import Transformer |
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def masked_mean(t, mask, dim = 1): |
|
t = t.masked_fill(~mask[:, :, None], 0.) |
|
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None] |
|
|
|
class VoiceCLIP(nn.Module): |
|
""" |
|
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding |
|
transcribed text. |
|
|
|
Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
dim_text=512, |
|
dim_speech=512, |
|
dim_latent=512, |
|
num_text_tokens=256, |
|
text_enc_depth=6, |
|
text_seq_len=120, |
|
text_heads=8, |
|
num_speech_tokens=8192, |
|
speech_enc_depth=6, |
|
speech_heads=8, |
|
speech_seq_len=250, |
|
text_mask_percentage=0, |
|
voice_mask_percentage=0, |
|
wav_token_compression=1024, |
|
use_xformers=False, |
|
): |
|
super().__init__() |
|
self.text_emb = nn.Embedding(num_text_tokens, dim_text) |
|
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False) |
|
|
|
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech) |
|
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False) |
|
|
|
if use_xformers: |
|
self.text_transformer = CheckpointedXTransformerEncoder( |
|
needs_permute=False, |
|
exit_permute=False, |
|
max_seq_len=-1, |
|
use_pos_emb=False, |
|
attn_layers=Encoder( |
|
dim=dim_text, |
|
depth=text_enc_depth, |
|
heads=text_heads, |
|
ff_dropout=.1, |
|
ff_mult=2, |
|
attn_dropout=.1, |
|
use_rmsnorm=True, |
|
ff_glu=True, |
|
rotary_pos_emb=True, |
|
)) |
|
self.speech_transformer = CheckpointedXTransformerEncoder( |
|
needs_permute=False, |
|
exit_permute=False, |
|
max_seq_len=-1, |
|
use_pos_emb=False, |
|
attn_layers=Encoder( |
|
dim=dim_speech, |
|
depth=speech_enc_depth, |
|
heads=speech_heads, |
|
ff_dropout=.1, |
|
ff_mult=2, |
|
attn_dropout=.1, |
|
use_rmsnorm=True, |
|
ff_glu=True, |
|
rotary_pos_emb=True, |
|
)) |
|
else: |
|
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth, |
|
heads=text_heads) |
|
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech, |
|
depth=speech_enc_depth, heads=speech_heads) |
|
|
|
self.temperature = nn.Parameter(torch.tensor(1.)) |
|
self.text_mask_percentage = text_mask_percentage |
|
self.voice_mask_percentage = voice_mask_percentage |
|
self.wav_token_compression = wav_token_compression |
|
self.xformers = use_xformers |
|
if not use_xformers: |
|
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text) |
|
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech) |
|
|
|
def forward( |
|
self, |
|
text, |
|
speech_tokens, |
|
return_loss=False |
|
): |
|
b, device = text.shape[0], text.device |
|
if self.training: |
|
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage |
|
voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage |
|
else: |
|
text_mask = torch.ones_like(text.float()).bool() |
|
voice_mask = torch.ones_like(speech_tokens.float()).bool() |
|
|
|
text_emb = self.text_emb(text) |
|
speech_emb = self.speech_emb(speech_tokens) |
|
|
|
if not self.xformers: |
|
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device)) |
|
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device)) |
|
|
|
enc_text = self.text_transformer(text_emb, mask=text_mask) |
|
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask) |
|
|
|
text_latents = masked_mean(enc_text, text_mask, dim=1) |
|
speech_latents = masked_mean(enc_speech, voice_mask, dim=1) |
|
|
|
text_latents = self.to_text_latent(text_latents) |
|
speech_latents = self.to_speech_latent(speech_latents) |
|
|
|
text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents)) |
|
|
|
temp = self.temperature.exp() |
|
|
|
if not return_loss: |
|
sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp |
|
return sim |
|
|
|
sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp |
|
labels = torch.arange(b, device=device) |
|
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2 |
|
return loss |
|
|
|
|
|
if __name__ == '__main__': |
|
clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2) |
|
clip(torch.randint(0,256,(2,120)), |
|
torch.tensor([50,100]), |
|
torch.randint(0,8192,(2,250)), |
|
torch.tensor([101,102]), |
|
return_loss=True) |
|
nonloss = clip(torch.randint(0,256,(2,120)), |
|
torch.tensor([50,100]), |
|
torch.randint(0,8192,(2,250)), |
|
torch.tensor([101,102]), |
|
return_loss=False) |
|
print(nonloss.shape) |