|
""" |
|
This model is based on OpenAI's UNet from improved diffusion, with modifications to support a MEL conditioning signal |
|
and an audio conditioning input. It has also been simplified somewhat. |
|
Credit: https://github.com/openai/improved-diffusion |
|
""" |
|
|
|
|
|
import math |
|
from abc import abstractmethod |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from models.arch_util import normalization, zero_module, Downsample, Upsample, AudioMiniEncoder, AttentionBlock |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
).to(device=timesteps.device) |
|
args = timesteps[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
|
|
class TimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
|
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): |
|
""" |
|
A sequential module that passes timestep embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
|
|
def forward(self, x, emb): |
|
for layer in self: |
|
if isinstance(layer, TimestepBlock): |
|
x = layer(x, emb) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class TimestepResBlock(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
|
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
up=False, |
|
down=False, |
|
kernel_size=3, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
padding = 1 if kernel_size == 3 else (2 if kernel_size == 5 else 0) |
|
|
|
self.in_layers = nn.Sequential( |
|
normalization(channels), |
|
nn.SiLU(), |
|
nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
normalization(self.out_channels), |
|
nn.SiLU(), |
|
nn.Dropout(p=dropout), |
|
zero_module( |
|
nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding) |
|
), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = nn.Conv1d( |
|
channels, self.out_channels, kernel_size, padding=padding |
|
) |
|
else: |
|
self.skip_connection = nn.Conv1d(channels, self.out_channels, 1) |
|
|
|
def forward(self, x, emb): |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = torch.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
|
|
class DiscreteSpectrogramConditioningBlock(nn.Module): |
|
def __init__(self, dvae_channels, channels, level): |
|
super().__init__() |
|
self.intg = nn.Sequential(nn.Conv1d(dvae_channels, channels, kernel_size=1), |
|
normalization(channels), |
|
nn.SiLU(), |
|
nn.Conv1d(channels, channels, kernel_size=3)) |
|
self.level = level |
|
|
|
""" |
|
Embeds the given codes and concatenates them onto x. Return shape is the same as x.shape. |
|
|
|
:param x: bxcxS waveform latent |
|
:param codes: bxN discrete codes, N <= S |
|
""" |
|
def forward(self, x, dvae_in): |
|
b, c, S = x.shape |
|
_, q, N = dvae_in.shape |
|
emb = self.intg(dvae_in) |
|
emb = nn.functional.interpolate(emb, size=(S,), mode='nearest') |
|
return torch.cat([x, emb], dim=1) |
|
|
|
|
|
class DiscreteDiffusionVocoder(nn.Module): |
|
""" |
|
The full UNet model with attention and timestep embedding. |
|
|
|
Customized to be conditioned on a spectrogram prior. |
|
|
|
:param in_channels: channels in the input Tensor. |
|
:param spectrogram_channels: channels in the conditioning spectrogram. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param attention_resolutions: a collection of downsample rates at which |
|
attention will take place. May be a set, list, or tuple. |
|
For example, if this contains 4, then at 4x downsampling, attention |
|
will be used. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param num_heads: the number of attention heads in each attention layer. |
|
:param num_heads_channels: if specified, ignore num_heads and instead use |
|
a fixed channel width per attention head. |
|
:param num_heads_upsample: works with num_heads to set a different number |
|
of heads for upsampling. Deprecated. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
:param use_new_attention_order: use a different attention pattern for potentially |
|
increased efficiency. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model_channels, |
|
in_channels=1, |
|
out_channels=2, |
|
dvae_dim=512, |
|
dropout=0, |
|
|
|
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48), |
|
num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2), |
|
|
|
|
|
spectrogram_conditioning_resolutions=(512,), |
|
attention_resolutions=(512,1024,2048), |
|
conv_resample=True, |
|
dims=1, |
|
use_fp16=False, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
kernel_size=3, |
|
scale_factor=2, |
|
conditioning_inputs_provided=True, |
|
time_embed_dim_multiplier=4, |
|
): |
|
super().__init__() |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
self.dims = dims |
|
|
|
padding = 1 if kernel_size == 3 else 2 |
|
|
|
time_embed_dim = model_channels * time_embed_dim_multiplier |
|
self.time_embed = nn.Sequential( |
|
nn.Linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
self.conditioning_enabled = conditioning_inputs_provided |
|
if conditioning_inputs_provided: |
|
self.contextual_embedder = AudioMiniEncoder(in_channels, time_embed_dim, base_channels=32, depth=6, resnet_blocks=1, |
|
attn_blocks=2, num_attn_heads=2, dropout=dropout, downsample_factor=4, kernel_size=5) |
|
|
|
seqlyr = TimestepEmbedSequential( |
|
nn.Conv1d(in_channels, model_channels, kernel_size, padding=padding) |
|
) |
|
seqlyr.level = 0 |
|
self.input_blocks = nn.ModuleList([seqlyr]) |
|
spectrogram_blocks = [] |
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
|
|
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)): |
|
if ds in spectrogram_conditioning_resolutions: |
|
spec_cond_block = DiscreteSpectrogramConditioningBlock(dvae_dim, ch, 2 ** level) |
|
self.input_blocks.append(spec_cond_block) |
|
spectrogram_blocks.append(spec_cond_block) |
|
ch *= 2 |
|
|
|
for _ in range(num_blocks): |
|
layers = [ |
|
TimestepResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(mult * model_channels), |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
kernel_size=kernel_size, |
|
) |
|
] |
|
ch = int(mult * model_channels) |
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
) |
|
) |
|
layer = TimestepEmbedSequential(*layers) |
|
layer.level = 2 ** level |
|
self.input_blocks.append(layer) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
upblk = TimestepEmbedSequential( |
|
TimestepResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
kernel_size=kernel_size, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, out_channels=out_ch, factor=scale_factor |
|
) |
|
) |
|
upblk.level = 2 ** level |
|
self.input_blocks.append(upblk) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
TimestepResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
kernel_size=kernel_size, |
|
), |
|
AttentionBlock( |
|
ch, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
), |
|
TimestepResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
kernel_size=kernel_size, |
|
), |
|
) |
|
self._feature_size += ch |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]: |
|
for i in range(num_blocks + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
TimestepResBlock( |
|
ch + ich, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(model_channels * mult), |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
kernel_size=kernel_size, |
|
) |
|
] |
|
ch = int(model_channels * mult) |
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
num_heads=num_heads_upsample, |
|
num_head_channels=num_head_channels, |
|
) |
|
) |
|
if level and i == num_blocks: |
|
out_ch = ch |
|
layers.append( |
|
TimestepResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
kernel_size=kernel_size, |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, out_channels=out_ch, factor=scale_factor) |
|
) |
|
ds //= 2 |
|
layer = TimestepEmbedSequential(*layers) |
|
layer.level = 2 ** level |
|
self.output_blocks.append(layer) |
|
self._feature_size += ch |
|
|
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
nn.SiLU(), |
|
zero_module(nn.Conv1d(model_channels, out_channels, kernel_size, padding=padding)), |
|
) |
|
|
|
def forward(self, x, timesteps, spectrogram, conditioning_input=None): |
|
""" |
|
Apply the model to an input batch. |
|
|
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param y: an [N] Tensor of labels, if class-conditional. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
assert x.shape[-1] % 2048 == 0 |
|
if self.conditioning_enabled: |
|
assert conditioning_input is not None |
|
|
|
hs = [] |
|
emb1 = self.time_embed(timestep_embedding(timesteps, self.model_channels)) |
|
if self.conditioning_enabled: |
|
emb2 = self.contextual_embedder(conditioning_input) |
|
emb = emb1 + emb2 |
|
else: |
|
emb = emb1 |
|
|
|
h = x.type(self.dtype) |
|
for k, module in enumerate(self.input_blocks): |
|
if isinstance(module, DiscreteSpectrogramConditioningBlock): |
|
h = module(h, spectrogram) |
|
else: |
|
h = module(h, emb) |
|
hs.append(h) |
|
h = self.middle_block(h, emb) |
|
for module in self.output_blocks: |
|
h = torch.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb) |
|
h = h.type(x.dtype) |
|
return self.out(h) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
clip = torch.randn(2, 1, 40960) |
|
spec = torch.randn(2,80,160) |
|
cond = torch.randn(2, 1, 40960) |
|
ts = torch.LongTensor([555, 556]) |
|
model = DiscreteDiffusionVocoder(model_channels=128, channel_mult=[1, 1, 1.5, 2, 3, 4, 6, 8, 8, 8, 8], |
|
num_res_blocks=[1,2, 2, 2, 2, 2, 2, 2, 2, 1, 1 ], spectrogram_conditioning_resolutions=[2,512], |
|
dropout=.05, attention_resolutions=[512,1024], num_heads=4, kernel_size=3, scale_factor=2, |
|
conditioning_inputs_provided=True, conditioning_input_dim=80, time_embed_dim_multiplier=4, |
|
dvae_dim=80) |
|
|
|
print(model(clip, ts, spec, cond).shape) |
|
|