|
import argparse |
|
import os |
|
|
|
import torchaudio |
|
|
|
from api import TextToSpeech |
|
from tortoise.utils.audio import load_audio, get_voices, load_voice |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--text', type=str, help='Text to speak.', default="The expressiveness of autoregressive transformers is literally nuts! I absolutely adore them.") |
|
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) ' |
|
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='random') |
|
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='fast') |
|
parser.add_argument('--voice_diversity_intelligibility_slider', type=float, |
|
help='How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility', |
|
default=.5) |
|
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='../results/') |
|
parser.add_argument('--model_dir', type=str, help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this' |
|
'should only be specified if you have custom checkpoints.', default='.models') |
|
args = parser.parse_args() |
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
|
tts = TextToSpeech(models_dir=args.model_dir) |
|
|
|
selected_voices = args.voice.split(',') |
|
for k, voice in enumerate(selected_voices): |
|
voice_samples, conditioning_latents = load_voice(voice) |
|
gen = tts.tts_with_preset(args.text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, |
|
preset=args.preset, clvp_cvvp_slider=args.voice_diversity_intelligibility_slider) |
|
torchaudio.save(os.path.join(args.output_path, f'{voice}_{k}.wav'), gen.squeeze(0).cpu(), 24000) |
|
|
|
|