jbetker commited on
Commit
8e94abd
1 Parent(s): 39ab8a9

Support CVVP & fix for major bug in API

Browse files
api.py CHANGED
@@ -7,12 +7,13 @@ import torch
7
  import torch.nn.functional as F
8
  import progressbar
9
 
 
10
  from models.diffusion_decoder import DiffusionTts
11
  from models.autoregressive import UnifiedVoice
12
  from tqdm import tqdm
13
 
14
  from models.arch_util import TorchMelSpectrogram
15
- from models.text_voice_clip import VoiceCLIP
16
  from models.vocoder import UnivNetGenerator
17
  from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
18
  from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
@@ -175,11 +176,15 @@ class TextToSpeech:
175
  average_conditioning_embeddings=True).cpu().eval()
176
  self.autoregressive_for_diffusion.load_state_dict(torch.load('.models/autoregressive.pth'))
177
 
178
- self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
179
- text_seq_len=350, text_heads=8,
180
- num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
181
- use_xformers=True).cpu().eval()
182
- self.clip.load_state_dict(torch.load('.models/clip.pth'))
 
 
 
 
183
 
184
  self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
185
  in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
@@ -216,6 +221,8 @@ class TextToSpeech:
216
  def tts(self, text, voice_samples, k=1,
217
  # autoregressive generation parameters follow
218
  num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
 
 
219
  # diffusion generation parameters follow
220
  diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
221
  **hf_generate_kwargs):
@@ -253,15 +260,22 @@ class TextToSpeech:
253
  self.autoregressive = self.autoregressive.cpu()
254
 
255
  clip_results = []
256
- self.clip = self.clip.cuda()
 
257
  for batch in samples:
258
  for i in range(batch.shape[0]):
259
  batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
260
- clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
 
 
 
 
 
261
  clip_results = torch.cat(clip_results, dim=0)
262
  samples = torch.cat(samples, dim=0)
263
  best_results = samples[torch.topk(clip_results, k=k).indices]
264
- self.clip = self.clip.cpu()
 
265
  del samples
266
 
267
  # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
 
7
  import torch.nn.functional as F
8
  import progressbar
9
 
10
+ from models.cvvp import CVVP
11
  from models.diffusion_decoder import DiffusionTts
12
  from models.autoregressive import UnifiedVoice
13
  from tqdm import tqdm
14
 
15
  from models.arch_util import TorchMelSpectrogram
16
+ from models.clvp import CLVP
17
  from models.vocoder import UnivNetGenerator
18
  from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
19
  from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
 
176
  average_conditioning_embeddings=True).cpu().eval()
177
  self.autoregressive_for_diffusion.load_state_dict(torch.load('.models/autoregressive.pth'))
178
 
179
+ self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
180
+ text_seq_len=350, text_heads=8,
181
+ num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
182
+ use_xformers=True).cpu().eval()
183
+ self.clvp.load_state_dict(torch.load('.models/clip.pth'))
184
+
185
+ self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
186
+ speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
187
+ self.cvvp.load_state_dict(torch.load('.models/cvvp.pth'))
188
 
189
  self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
190
  in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
 
221
  def tts(self, text, voice_samples, k=1,
222
  # autoregressive generation parameters follow
223
  num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
224
+ # CLVP & CVVP parameters
225
+ clvp_cvvp_slider=.5,
226
  # diffusion generation parameters follow
227
  diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
228
  **hf_generate_kwargs):
 
260
  self.autoregressive = self.autoregressive.cpu()
261
 
262
  clip_results = []
263
+ self.clvp = self.clvp.cuda()
264
+ self.cvvp = self.cvvp.cuda()
265
  for batch in samples:
266
  for i in range(batch.shape[0]):
267
  batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
268
+ clvp = self.clvp(text.repeat(batch.shape[0], 1), batch, return_loss=False)
269
+ cvvp_accumulator = 0
270
+ for cl in range(conds.shape[1]):
271
+ cvvp_accumulator = cvvp_accumulator + self.cvvp(conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False )
272
+ cvvp = cvvp_accumulator / conds.shape[1]
273
+ clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider))
274
  clip_results = torch.cat(clip_results, dim=0)
275
  samples = torch.cat(samples, dim=0)
276
  best_results = samples[torch.topk(clip_results, k=k).indices]
277
+ self.clvp = self.clvp.cpu()
278
+ self.cvvp = self.cvvp.cpu()
279
  del samples
280
 
281
  # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
models/autoregressive.py CHANGED
@@ -562,7 +562,8 @@ class UnifiedVoice(nn.Module):
562
  logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList()
563
  max_length = trunc_index + self.max_mel_tokens - 1 if max_generate_length is None else trunc_index + max_generate_length
564
  gen = self.inference_model.generate(inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
565
- max_length=max_length, logits_processor=logits_processor, **hf_generate_kwargs)
 
566
  return gen[:, trunc_index:]
567
 
568
 
 
562
  logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList()
563
  max_length = trunc_index + self.max_mel_tokens - 1 if max_generate_length is None else trunc_index + max_generate_length
564
  gen = self.inference_model.generate(inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
565
+ max_length=max_length, logits_processor=logits_processor,
566
+ num_return_sequences=num_return_sequences, **hf_generate_kwargs)
567
  return gen[:, trunc_index:]
568
 
569
 
models/{text_voice_clip.py → clvp.py} RENAMED
@@ -16,7 +16,7 @@ def masked_mean(t, mask, dim = 1):
16
  t = t.masked_fill(~mask[:, :, None], 0.)
17
  return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
18
 
19
- class VoiceCLIP(nn.Module):
20
  """
21
  CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
22
  transcribed text.
@@ -141,7 +141,7 @@ class VoiceCLIP(nn.Module):
141
 
142
 
143
  if __name__ == '__main__':
144
- clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2)
145
  clip(torch.randint(0,256,(2,120)),
146
  torch.tensor([50,100]),
147
  torch.randint(0,8192,(2,250)),
 
16
  t = t.masked_fill(~mask[:, :, None], 0.)
17
  return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
18
 
19
+ class CLVP(nn.Module):
20
  """
21
  CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
22
  transcribed text.
 
141
 
142
 
143
  if __name__ == '__main__':
144
+ clip = CLVP(text_mask_percentage=.2, voice_mask_percentage=.2)
145
  clip(torch.randint(0,256,(2,120)),
146
  torch.tensor([50,100]),
147
  torch.randint(0,8192,(2,250)),
models/cvvp.py CHANGED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch import einsum
5
+ from torch.utils.checkpoint import checkpoint
6
+
7
+ from models.arch_util import AttentionBlock
8
+ from models.xtransformers import ContinuousTransformerWrapper, Encoder
9
+
10
+
11
+ def exists(val):
12
+ return val is not None
13
+
14
+
15
+ def masked_mean(t, mask):
16
+ t = t.masked_fill(~mask, 0.)
17
+ return t.sum(dim = 1) / mask.sum(dim = 1)
18
+
19
+
20
+ class CollapsingTransformer(nn.Module):
21
+ def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
22
+ super().__init__()
23
+ self.transformer = ContinuousTransformerWrapper(
24
+ max_seq_len=-1,
25
+ use_pos_emb=False,
26
+ attn_layers=Encoder(
27
+ dim=model_dim,
28
+ depth=depth,
29
+ heads=heads,
30
+ ff_dropout=dropout,
31
+ ff_mult=1,
32
+ attn_dropout=dropout,
33
+ use_rmsnorm=True,
34
+ ff_glu=True,
35
+ rotary_pos_emb=True,
36
+ **encoder_kwargs,
37
+ ))
38
+ self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
39
+ AttentionBlock(output_dims, num_heads=heads, do_checkpoint=False),
40
+ nn.Conv1d(output_dims, output_dims, 1))
41
+ self.mask_percentage = mask_percentage
42
+
43
+ def forward(self, x, **transformer_kwargs):
44
+ h = self.transformer(x, **transformer_kwargs)
45
+ h = h.permute(0,2,1)
46
+ h = checkpoint(self.pre_combiner, h).permute(0,2,1)
47
+ if self.training:
48
+ mask = torch.rand_like(h.float()) > self.mask_percentage
49
+ else:
50
+ mask = torch.ones_like(h.float()).bool()
51
+ return masked_mean(h, mask)
52
+
53
+
54
+ class ConvFormatEmbedding(nn.Module):
55
+ def __init__(self, *args, **kwargs):
56
+ super().__init__()
57
+ self.emb = nn.Embedding(*args, **kwargs)
58
+
59
+ def forward(self, x):
60
+ y = self.emb(x)
61
+ return y.permute(0,2,1)
62
+
63
+
64
+ class CVVP(nn.Module):
65
+ def __init__(
66
+ self,
67
+ model_dim=512,
68
+ transformer_heads=8,
69
+ dropout=.1,
70
+ conditioning_enc_depth=8,
71
+ cond_mask_percentage=0,
72
+ mel_channels=80,
73
+ mel_codes=None,
74
+ speech_enc_depth=8,
75
+ speech_mask_percentage=0,
76
+ latent_multiplier=1,
77
+ ):
78
+ super().__init__()
79
+ latent_dim = latent_multiplier*model_dim
80
+ self.temperature = nn.Parameter(torch.tensor(1.))
81
+
82
+ self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
83
+ nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
84
+ self.conditioning_transformer = CollapsingTransformer(model_dim, model_dim, transformer_heads, dropout, conditioning_enc_depth, cond_mask_percentage)
85
+ self.to_conditioning_latent = nn.Linear(latent_dim, latent_dim, bias=False)
86
+
87
+ if mel_codes is None:
88
+ self.speech_emb = nn.Conv1d(mel_channels, model_dim, kernel_size=5, padding=2)
89
+ else:
90
+ self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
91
+ self.speech_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
92
+ self.to_speech_latent = nn.Linear(latent_dim, latent_dim, bias=False)
93
+
94
+ def get_grad_norm_parameter_groups(self):
95
+ return {
96
+ 'conditioning': list(self.conditioning_transformer.parameters()),
97
+ 'speech': list(self.speech_transformer.parameters()),
98
+ }
99
+
100
+ def forward(
101
+ self,
102
+ mel_cond,
103
+ mel_input,
104
+ return_loss=False
105
+ ):
106
+ cond_emb = self.cond_emb(mel_cond).permute(0,2,1)
107
+ enc_cond = self.conditioning_transformer(cond_emb)
108
+ cond_latents = self.to_conditioning_latent(enc_cond)
109
+
110
+ speech_emb = self.speech_emb(mel_input).permute(0,2,1)
111
+ enc_speech = self.speech_transformer(speech_emb)
112
+ speech_latents = self.to_speech_latent(enc_speech)
113
+
114
+
115
+ cond_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (cond_latents, speech_latents))
116
+ temp = self.temperature.exp()
117
+
118
+ if not return_loss:
119
+ sim = einsum('n d, n d -> n', cond_latents, speech_latents) * temp
120
+ return sim
121
+
122
+ sim = einsum('i d, j d -> i j', cond_latents, speech_latents) * temp
123
+ labels = torch.arange(cond_latents.shape[0], device=mel_input.device)
124
+ loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
125
+
126
+ return loss
127
+
128
+
129
+ if __name__ == '__main__':
130
+ clvp = CVVP()
131
+ clvp(torch.randn(2,80,100),
132
+ torch.randn(2,80,95),
133
+ return_loss=True)
read.py CHANGED
@@ -28,7 +28,7 @@ def split_and_recombine_text(texts, desired_length=200, max_len=300):
28
 
29
  if __name__ == '__main__':
30
  parser = argparse.ArgumentParser()
31
- parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
32
  parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
33
  'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
34
  parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
 
28
 
29
  if __name__ == '__main__':
30
  parser = argparse.ArgumentParser()
31
+ parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood2.txt")
32
  parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
33
  'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
34
  parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')