update
Browse files- .gitignore +1 -0
- api.py +21 -22
- do_tts.py +6 -6
- read.py +40 -32
- utils/audio.py +13 -0
.gitignore
CHANGED
@@ -20,6 +20,7 @@ parts/
|
|
20 |
sdist/
|
21 |
var/
|
22 |
wheels/
|
|
|
23 |
pip-wheel-metadata/
|
24 |
share/python-wheels/
|
25 |
*.egg-info/
|
|
|
20 |
sdist/
|
21 |
var/
|
22 |
wheels/
|
23 |
+
results/*
|
24 |
pip-wheel-metadata/
|
25 |
share/python-wheels/
|
26 |
*.egg-info/
|
api.py
CHANGED
@@ -150,7 +150,7 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
|
|
150 |
|
151 |
|
152 |
class TextToSpeech:
|
153 |
-
def __init__(self, autoregressive_batch_size=
|
154 |
self.autoregressive_batch_size = autoregressive_batch_size
|
155 |
self.tokenizer = VoiceBpeTokenizer()
|
156 |
download_models()
|
@@ -160,14 +160,7 @@ class TextToSpeech:
|
|
160 |
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
161 |
train_solo_embeddings=False,
|
162 |
average_conditioning_embeddings=True).cpu().eval()
|
163 |
-
self.autoregressive.load_state_dict(torch.load('.models/
|
164 |
-
|
165 |
-
self.autoregressive_for_latents = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
166 |
-
model_dim=1024,
|
167 |
-
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
168 |
-
train_solo_embeddings=False,
|
169 |
-
average_conditioning_embeddings=True).cpu().eval()
|
170 |
-
self.autoregressive_for_latents.load_state_dict(torch.load('.models/autoregressive_audiobooks.pth'))
|
171 |
|
172 |
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
173 |
text_seq_len=350, text_heads=8,
|
@@ -178,32 +171,38 @@ class TextToSpeech:
|
|
178 |
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
179 |
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
180 |
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
181 |
-
self.diffusion.load_state_dict(torch.load('.models/
|
182 |
|
183 |
self.vocoder = UnivNetGenerator().cpu()
|
184 |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
185 |
self.vocoder.eval(inference=True)
|
186 |
|
187 |
-
def tts_with_preset(self, text, voice_samples, preset='
|
188 |
"""
|
189 |
Calls TTS with one of a set of preset generation parameters. Options:
|
190 |
-
'
|
191 |
-
'
|
192 |
-
'
|
|
|
193 |
"""
|
|
|
|
|
|
|
|
|
194 |
presets = {
|
195 |
-
'
|
196 |
-
'
|
197 |
-
'
|
|
|
198 |
}
|
199 |
kwargs.update(presets[preset])
|
200 |
return self.tts(text, voice_samples, **kwargs)
|
201 |
|
202 |
def tts(self, text, voice_samples, k=1,
|
203 |
# autoregressive generation parameters follow
|
204 |
-
num_autoregressive_samples=512, temperature=.
|
205 |
# diffusion generation parameters follow
|
206 |
-
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature
|
207 |
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
208 |
text = F.pad(text, (0, 1)) # This may not be necessary.
|
209 |
|
@@ -250,11 +249,11 @@ class TextToSpeech:
|
|
250 |
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
251 |
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
252 |
# results, but will increase memory usage.
|
253 |
-
self.
|
254 |
-
best_latents = self.
|
255 |
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
|
256 |
return_latent=True, clip_inputs=False)
|
257 |
-
self.
|
258 |
|
259 |
print("Performing vocoding..")
|
260 |
wav_candidates = []
|
|
|
150 |
|
151 |
|
152 |
class TextToSpeech:
|
153 |
+
def __init__(self, autoregressive_batch_size=16):
|
154 |
self.autoregressive_batch_size = autoregressive_batch_size
|
155 |
self.tokenizer = VoiceBpeTokenizer()
|
156 |
download_models()
|
|
|
160 |
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
161 |
train_solo_embeddings=False,
|
162 |
average_conditioning_embeddings=True).cpu().eval()
|
163 |
+
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
166 |
text_seq_len=350, text_heads=8,
|
|
|
171 |
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
172 |
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
173 |
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
174 |
+
self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder.pth'))
|
175 |
|
176 |
self.vocoder = UnivNetGenerator().cpu()
|
177 |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
178 |
self.vocoder.eval(inference=True)
|
179 |
|
180 |
+
def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs):
|
181 |
"""
|
182 |
Calls TTS with one of a set of preset generation parameters. Options:
|
183 |
+
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
|
184 |
+
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
|
185 |
+
'standard': Very good quality. This is generally about as good as you are going to get.
|
186 |
+
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
187 |
"""
|
188 |
+
# Use generally found best tuning knobs for generation.
|
189 |
+
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .8,
|
190 |
+
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
191 |
+
# Presets are defined here.
|
192 |
presets = {
|
193 |
+
'ultra_fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 16, 'cond_free': False},
|
194 |
+
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32},
|
195 |
+
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128},
|
196 |
+
'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 2048},
|
197 |
}
|
198 |
kwargs.update(presets[preset])
|
199 |
return self.tts(text, voice_samples, **kwargs)
|
200 |
|
201 |
def tts(self, text, voice_samples, k=1,
|
202 |
# autoregressive generation parameters follow
|
203 |
+
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8,
|
204 |
# diffusion generation parameters follow
|
205 |
+
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,):
|
206 |
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
207 |
text = F.pad(text, (0, 1)) # This may not be necessary.
|
208 |
|
|
|
249 |
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
250 |
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
251 |
# results, but will increase memory usage.
|
252 |
+
self.autoregressive = self.autoregressive.cuda()
|
253 |
+
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
|
254 |
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
|
255 |
return_latent=True, clip_inputs=False)
|
256 |
+
self.autoregressive = self.autoregressive.cpu()
|
257 |
|
258 |
print("Performing vocoding..")
|
259 |
wav_candidates = []
|
do_tts.py
CHANGED
@@ -27,12 +27,12 @@ if __name__ == '__main__':
|
|
27 |
}
|
28 |
|
29 |
parser = argparse.ArgumentParser()
|
30 |
-
parser.add_argument('
|
31 |
-
parser.add_argument('
|
32 |
-
parser.add_argument('
|
33 |
-
parser.add_argument('
|
34 |
-
parser.add_argument('
|
35 |
-
parser.add_argument('
|
36 |
args = parser.parse_args()
|
37 |
os.makedirs(args.output_path, exist_ok=True)
|
38 |
|
|
|
27 |
}
|
28 |
|
29 |
parser = argparse.ArgumentParser()
|
30 |
+
parser.add_argument('--text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
31 |
+
parser.add_argument('--voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='obama,dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
32 |
+
parser.add_argument('--num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128)
|
33 |
+
parser.add_argument('--batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
34 |
+
parser.add_argument('--num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
35 |
+
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/')
|
36 |
args = parser.parse_args()
|
37 |
os.makedirs(args.output_path, exist_ok=True)
|
38 |
|
read.py
CHANGED
@@ -6,7 +6,7 @@ import torch.nn.functional as F
|
|
6 |
import torchaudio
|
7 |
|
8 |
from api import TextToSpeech, load_conditioning
|
9 |
-
from utils.audio import load_audio
|
10 |
from utils.tokenizer import VoiceBpeTokenizer
|
11 |
|
12 |
def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
@@ -27,41 +27,49 @@ def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|
27 |
return texts
|
28 |
|
29 |
if __name__ == '__main__':
|
30 |
-
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
|
31 |
-
# has shown that the model does not generalize to new voices very well.
|
32 |
-
preselected_cond_voices = {
|
33 |
-
'emma_stone': ['voices/emma_stone/1.wav','voices/emma_stone/2.wav','voices/emma_stone/3.wav'],
|
34 |
-
'tom_hanks': ['voices/tom_hanks/1.wav','voices/tom_hanks/2.wav','voices/tom_hanks/3.wav'],
|
35 |
-
'patrick_stewart': ['voices/patrick_stewart/1.wav','voices/patrick_stewart/2.wav','voices/patrick_stewart/3.wav','voices/patrick_stewart/4.wav'],
|
36 |
-
}
|
37 |
-
|
38 |
parser = argparse.ArgumentParser()
|
39 |
-
parser.add_argument('
|
40 |
-
parser.add_argument('
|
41 |
-
|
42 |
-
parser.add_argument('
|
43 |
-
parser.add_argument('
|
44 |
-
parser.add_argument('-generation_preset', type=str, help='Preset to use for generation', default='realistic')
|
45 |
args = parser.parse_args()
|
46 |
-
os.makedirs(args.output_path, exist_ok=True)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
conds.
|
61 |
-
|
62 |
-
torchaudio.save(os.path.join(args.output_path, f'{j}.wav'), gen.squeeze(0).cpu(), 24000)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
|
|
6 |
import torchaudio
|
7 |
|
8 |
from api import TextToSpeech, load_conditioning
|
9 |
+
from utils.audio import load_audio, get_voices
|
10 |
from utils.tokenizer import VoiceBpeTokenizer
|
11 |
|
12 |
def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|
|
27 |
return texts
|
28 |
|
29 |
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
parser = argparse.ArgumentParser()
|
31 |
+
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
|
32 |
+
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
|
33 |
+
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
|
34 |
+
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
35 |
+
parser.add_argument('--generation_preset', type=str, help='Preset to use for generation', default='standard')
|
|
|
36 |
args = parser.parse_args()
|
|
|
37 |
|
38 |
+
outpath = args.output_path
|
39 |
+
voices = get_voices()
|
40 |
+
selected_voices = args.voice.split(',')
|
41 |
+
for selected_voice in selected_voices:
|
42 |
+
voice_outpath = os.path.join(outpath, selected_voice)
|
43 |
+
os.makedirs(voice_outpath, exist_ok=True)
|
44 |
+
|
45 |
+
with open(args.textfile, 'r', encoding='utf-8') as f:
|
46 |
+
text = ''.join([l for l in f.readlines()])
|
47 |
+
texts = split_and_recombine_text(text)
|
48 |
+
tts = TextToSpeech()
|
49 |
|
50 |
+
if '&' in selected_voice:
|
51 |
+
voice_sel = selected_voice.split('&')
|
52 |
+
else:
|
53 |
+
voice_sel = [selected_voice]
|
54 |
+
cond_paths = []
|
55 |
+
for vsel in voice_sel:
|
56 |
+
if vsel not in voices.keys():
|
57 |
+
print(f'Error: voice {vsel} not available. Skipping.')
|
58 |
+
continue
|
59 |
+
cond_paths.extend(voices[vsel])
|
60 |
+
if not cond_paths:
|
61 |
+
print('Error: no valid voices specified. Try again.')
|
62 |
|
63 |
+
priors = []
|
64 |
+
for j, text in enumerate(texts):
|
65 |
+
conds = priors.copy()
|
66 |
+
for cond_path in cond_paths:
|
67 |
+
c = load_audio(cond_path, 22050)
|
68 |
+
conds.append(c)
|
69 |
+
gen = tts.tts_with_preset(text, conds, preset=args.generation_preset)
|
70 |
+
torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), gen.squeeze(0).cpu(), 24000)
|
|
|
71 |
|
72 |
+
priors.append(torchaudio.functional.resample(gen, 24000, 22050).squeeze(0))
|
73 |
+
while len(priors) > 2:
|
74 |
+
priors.pop(0)
|
75 |
|
utils/audio.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
import numpy as np
|
@@ -78,6 +81,16 @@ def dynamic_range_decompression(x, C=1):
|
|
78 |
return torch.exp(x) / C
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
class TacotronSTFT(torch.nn.Module):
|
82 |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
|
83 |
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
|
|
|
1 |
+
import os
|
2 |
+
from glob import glob
|
3 |
+
|
4 |
import torch
|
5 |
import torchaudio
|
6 |
import numpy as np
|
|
|
81 |
return torch.exp(x) / C
|
82 |
|
83 |
|
84 |
+
def get_voices():
|
85 |
+
subs = os.listdir('voices')
|
86 |
+
voices = {}
|
87 |
+
for sub in subs:
|
88 |
+
subj = os.path.join('voices', sub)
|
89 |
+
if os.path.isdir(subj):
|
90 |
+
voices[sub] = glob(f'{subj}/*.wav')
|
91 |
+
return voices
|
92 |
+
|
93 |
+
|
94 |
class TacotronSTFT(torch.nn.Module):
|
95 |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
|
96 |
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
|