import argparse import os import random from urllib import request import torch import torch.nn.functional as F import progressbar from models.diffusion_decoder import DiffusionTts from models.autoregressive import UnifiedVoice from tqdm import tqdm from models.arch_util import TorchMelSpectrogram from models.text_voice_clip import VoiceCLIP from models.vocoder import UnivNetGenerator from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule from utils.tokenizer import VoiceBpeTokenizer, lev_distance pbar = None def download_models(): MODELS = { 'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin', 'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin', 'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin' } os.makedirs('.models', exist_ok=True) def show_progress(block_num, block_size, total_size): global pbar if pbar is None: pbar = progressbar.ProgressBar(maxval=total_size) pbar.start() downloaded = block_num * block_size if downloaded < total_size: pbar.update(downloaded) else: pbar.finish() pbar = None for model_name, url in MODELS.items(): if os.path.exists(f'.models/{model_name}'): continue print(f'Downloading {model_name} from {url}...') request.urlretrieve(url, f'.models/{model_name}', show_progress) print('Done.') def pad_or_truncate(t, length): if t.shape[-1] == length: return t elif t.shape[-1] < length: return F.pad(t, (0, length-t.shape[-1])) else: return t[..., :length] def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1): """ Helper function to load a GaussianDiffusion instance configured for use as a vocoder. """ return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps), conditioning_free=cond_free, conditioning_free_k=cond_free_k) def load_conditioning(clip, cond_length=132300): gap = clip.shape[-1] - cond_length if gap < 0: clip = F.pad(clip, pad=(0, abs(gap))) elif gap > 0: rand_start = random.randint(0, gap) clip = clip[:, rand_start:rand_start + cond_length] mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0) return mel_clip.unsqueeze(0).cuda() def clip_guided_generation(autoregressive_model, clip_model, conditioning_input, text_input, num_batches, stop_mel_token, tokens_per_clip_inference=10, clip_results_to_reduce_to=8, **generation_kwargs): """ Uses a CLVP model trained to associate full text with **partial** audio clips to pick the best generation candidates every few iterations. The top results are then propagated forward through the generation process. Rinse and repeat. This is a hybrid between beam search and sampling. """ token_goal = tokens_per_clip_inference finished = False while not finished and token_goal < autoregressive_model.max_mel_tokens: samples = [] for b in tqdm(range(num_batches)): codes = autoregressive_model.inference_speech(conditioning_input, text_input, **generation_kwargs) samples.append(codes) for batch in samples: for i in range(batch.shape[0]): batch[i] = fix_autoregressive_output(batch[i], stop_mel_token, complain=False) clip_results.append(clip_model(text_input.repeat(batch.shape[0], 1), batch, return_loss=False)) clip_results = torch.cat(clip_results, dim=0) samples = torch.cat(samples, dim=0) best_results = samples[torch.topk(clip_results, k=clip_results_to_reduce_to).indices] def fix_autoregressive_output(codes, stop_token, complain=True): """ This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was trained on and what the autoregressive code generator creates (which has no padding or end). This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE and copying out the last few codes. Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. """ # Strip off the autoregressive stop token and add padding. stop_token_indices = (codes == stop_token).nonzero() if len(stop_token_indices) == 0: if complain: print("No stop tokens found, enjoy that output of yours!") return codes else: codes[stop_token_indices] = 83 stm = stop_token_indices.min().item() codes[stm:] = 83 if stm - 3 < codes.shape[0]: codes[-3] = 45 codes[-2] = 45 codes[-1] = 248 return codes def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_samples, temperature=1): """ Uses the specified diffusion model to convert discrete codes into a spectrogram. """ with torch.no_grad(): cond_mels = [] for sample in conditioning_samples: sample = pad_or_truncate(sample, 102400) cond_mel = wav_to_univnet_mel(sample.to(mel_codes.device), do_normalization=False) cond_mels.append(cond_mel) cond_mels = torch.stack(cond_mels, dim=1) output_seq_len = mel_codes.shape[1]*4*24000//22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. output_shape = (mel_codes.shape[0], 100, output_seq_len) precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False) noise = torch.randn(output_shape, device=mel_codes.device) * temperature mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise, model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings}) return denormalize_tacotron_mel(mel)[:,:,:output_seq_len] class TextToSpeech: def __init__(self, autoregressive_batch_size=32): self.autoregressive_batch_size = autoregressive_batch_size self.tokenizer = VoiceBpeTokenizer() download_models() self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30, model_dim=1024, heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False, average_conditioning_embeddings=True).cpu().eval() self.autoregressive.load_state_dict(torch.load('.models/autoregressive_audiobooks.pth')) self.autoregressive_for_latents = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30, model_dim=1024, heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False, average_conditioning_embeddings=True).cpu().eval() self.autoregressive_for_latents.load_state_dict(torch.load('.models/autoregressive_audiobooks.pth')) self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, text_seq_len=350, text_heads=8, num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430, use_xformers=True).cpu().eval() self.clip.load_state_dict(torch.load('.models/clip.pth')) self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200, in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16, layer_drop=0, unconditioned_percentage=0).cpu().eval() self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder_audiobooks.pth')) self.vocoder = UnivNetGenerator().cpu() self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g']) self.vocoder.eval(inference=True) def tts_with_preset(self, text, voice_samples, preset='intelligible', **kwargs): """ Calls TTS with one of a set of preset generation parameters. Options: 'intelligible': Maximizes the probability of understandable words at the cost of diverse voices, intonation and prosody. 'realistic': Increases the diversity of spoken voices and improves realism of vocal characteristics at the cost of intelligibility. 'mid': Somewhere between 'intelligible' and 'realistic'. """ presets = { 'intelligible': {'temperature': .5, 'length_penalty': 2.0, 'repetition_penalty': 2.0, 'top_p': .5, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': .7, 'diffusion_temperature': .7}, 'mid': {'temperature': .7, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .7, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 1.5, 'diffusion_temperature': .8}, 'realistic': {'temperature': 1.0, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .9, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 2, 'diffusion_temperature': 1}, } kwargs.update(presets[preset]) return self.tts(text, voice_samples, **kwargs) def tts(self, text, voice_samples, k=1, # autoregressive generation parameters follow num_autoregressive_samples=512, temperature=.5, length_penalty=1, repetition_penalty=2.0, top_p=.5, # diffusion generation parameters follow diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=.7,): text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda() text = F.pad(text, (0, 1)) # This may not be necessary. conds = [] if not isinstance(voice_samples, list): voice_samples = [voice_samples] for vs in voice_samples: conds.append(load_conditioning(vs)) conds = torch.stack(conds, dim=1) diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k) with torch.no_grad(): samples = [] num_batches = num_autoregressive_samples // self.autoregressive_batch_size stop_mel_token = self.autoregressive.stop_mel_token calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output" self.autoregressive = self.autoregressive.cuda() for b in tqdm(range(num_batches)): codes = self.autoregressive.inference_speech(conds, text, do_sample=True, top_p=top_p, temperature=temperature, num_return_sequences=self.autoregressive_batch_size, length_penalty=length_penalty, repetition_penalty=repetition_penalty) padding_needed = self.autoregressive.max_mel_tokens - codes.shape[1] codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) samples.append(codes) self.autoregressive = self.autoregressive.cpu() clip_results = [] self.clip = self.clip.cuda() for batch in samples: for i in range(batch.shape[0]): batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False)) clip_results = torch.cat(clip_results, dim=0) samples = torch.cat(samples, dim=0) best_results = samples[torch.topk(clip_results, k=k).indices] self.clip = self.clip.cpu() del samples # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these # results, but will increase memory usage. self.autoregressive_for_latents = self.autoregressive_for_latents.cuda() best_latents = self.autoregressive_for_latents(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results, torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device), return_latent=True, clip_inputs=False) self.autoregressive_for_latents = self.autoregressive_for_latents.cpu() print("Performing vocoding..") wav_candidates = [] self.diffusion = self.diffusion.cuda() self.vocoder = self.vocoder.cuda() for b in range(best_results.shape[0]): codes = best_results[b].unsqueeze(0) latents = best_latents[b].unsqueeze(0) # Find the first occurrence of the "calm" token and trim the codes to that. ctokens = 0 for k in range(codes.shape[-1]): if codes[0, k] == calm_token: ctokens += 1 else: ctokens = 0 if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. latents = latents[:, :k] break mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, voice_samples, temperature=diffusion_temperature) wav = self.vocoder.inference(mel) wav_candidates.append(wav.cpu()) self.diffusion = self.diffusion.cpu() self.vocoder = self.vocoder.cpu() if len(wav_candidates) > 1: return wav_candidates return wav_candidates[0]