stella_en_400M_v5 / modeling.py
jburmeister's picture
Duplicate from dunzhang/stella_en_400M_v5
17c819c verified
raw
history blame
57.5 kB
# coding=utf-8
# Copyright 2024 The GTE Team Authors and Alibaba Group.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch NEW model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
try:
import xformers.ops as xops
except ImportError as e:
xops = None
from .configuration import NewConfig
logger = logging.get_logger(__name__)
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
class IndexFirstAxis(torch.autograd.Function):
@staticmethod
def forward(ctx, input, indices):
ctx.save_for_backward(indices)
assert input.ndim >= 2
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
second_dim = other_shape.numel()
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
# return input[indices]
# return torch.gather(
# rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
# ).reshape(-1, *other_shape)
return torch.gather(
input.view(ctx.first_axis_dim, second_dim),
0,
indices.unsqueeze(-1).expand(indices.size(0), second_dim)
).reshape(-1, *other_shape)
@staticmethod
def backward(ctx, grad_output):
(indices,) = ctx.saved_tensors
assert grad_output.ndim >= 2
other_shape = grad_output.shape[1:]
# grad_output = rearrange(grad_output, "b ... -> b (...)")
grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
grad_input = torch.zeros(
[ctx.first_axis_dim, grad_output.shape[1]],
device=grad_output.device,
dtype=grad_output.dtype,
)
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
# grad_input[indices] = grad_output
# grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
grad_input.scatter_(
0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
)
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
index_first_axis = IndexFirstAxis.apply
def unpad_input(hidden_states, attention_mask=None, indices=None):
"""
Arguments:
hidden_states: (batch, seqlen, ...)
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
Return:
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
"""
if indices is None:
assert attention_mask is not None
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
# so we write custom forward and backward to make it a bit faster.
hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
return index_first_axis(hidden_states, indices)
class IndexPutFirstAxis(torch.autograd.Function):
@staticmethod
def forward(
ctx,
values: torch.Tensor,
indices: torch.Tensor,
first_axis_dim
) -> torch.Tensor:
ctx.save_for_backward(indices)
assert indices.ndim == 1
assert values.ndim >= 2
output = torch.zeros(
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
)
output[indices] = values
return output
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
indices, = ctx.saved_tensors
grad_values = grad_output[indices]
return grad_values, None, None
index_put_first_axis = IndexPutFirstAxis.apply
def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
"""Add padding to sequences.
Arguments:
inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
batch: int batch_size
seqlen: int max sequence length
Returns:
inputs: (batch, seqlen, ...)
"""
output = index_put_first_axis(inputs, indices, batch * seqlen)
return output.view(batch, seqlen, *inputs.shape[1:])
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos, sin = cos.to(q.dtype), sin.to(q.dtype)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
)
class NTKScalingRotaryEmbedding(RotaryEmbedding):
"""RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
self.scaling_factor = scaling_factor
self.mixed_b = mixed_b
super().__init__(dim, max_position_embeddings, base, device)
max_position_embeddings = max_position_embeddings * self.scaling_factor
self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
if self.mixed_b is None:
inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
else:
a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
inv_freq = inv_freq / lambda_1_m # (10)
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
LAYER_NORM = {
'layer_norm': nn.LayerNorm,
'rms_norm': RMSNorm
}
class NewEmbeddings(nn.Module):
"""
Embedding and Unpadding.
"""
def __init__(self, config: NewConfig):
super().__init__()
self.padding_idx = config.pad_token_id
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
)
self.position_embedding_type = config.position_embedding_type
if self.position_embedding_type == 'absolute':
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
elif self.position_embedding_type == 'rope':
self._init_rope(config)
else:
raise ValueError
self.type_vocab_size = config.type_vocab_size
if self.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids is contiguous in memory and excluded when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings), persistent=False
)
def _init_rope(self, config):
kwargs = dict(
dim=int(config.hidden_size / config.num_attention_heads),
max_position_embeddings=config.max_position_embeddings,
base=config.rope_theta
)
if config.rope_scaling is None:
self.rotary_emb = RotaryEmbedding(**kwargs)
else:
kwargs.update(scaling_factor=config.rope_scaling["factor"])
scaling_type = config.rope_scaling["type"]
if scaling_type == 'ntk':
kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
# elif scaling_type == "linear":
# self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
# elif scaling_type == "dynamic":
# self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def forward(
self,
unpad_inputs: bool,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
length: Optional[List[int]] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
"""
"""
if inputs_embeds is None:
device, input_shape = input_ids.device, input_ids.shape
else:
device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
batch_size, seq_length = input_shape
# Set attention_mask if it's None
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if length is not None:
for i, l in enumerate(length):
attention_mask[i, l:] = 0
# Set attention_mask_bool for unpadding
if unpad_inputs:
attention_mask_bool = attention_mask.bool()
if length is None:
length = attention_mask.sum(-1).tolist()
# Get word embeddings
if inputs_embeds is None:
if unpad_inputs:
input_ids = input_ids[attention_mask_bool].unsqueeze(0)
inputs_embeds = self.word_embeddings(input_ids)
else:
if unpad_inputs:
inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
embeddings = inputs_embeds
# Set and unpad position_ids
if position_ids is None:
if seq_length > self.position_ids.size(0):
self.register_buffer(
"position_ids", torch.arange(seq_length), persistent=False
)
if unpad_inputs:
# [1, cumsum_seq_len]
position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
else:
# [bs, seq_len]
position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
elif unpad_inputs:
position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
# Compute rotary embedding
if self.position_embedding_type == 'rope':
rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
rope_embeds = rope_cos, rope_sin
else:
rope_embeds = None
if self.type_vocab_size > 0:
if token_type_ids is None:
token_type_ids = position_ids.mul(0)
elif unpad_inputs:
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings += token_type_embeddings
# BERT position
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings, attention_mask, rope_embeds, length
class NewAttention(nn.Module):
def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
if pack_qkv is None:
pack_qkv = config.pack_qkv
self.pack_qkv = pack_qkv
if self.pack_qkv:
self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
else:
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
if use_memory_efficient_attention is None:
use_memory_efficient_attention = self.config.use_memory_efficient_attention
self.use_memory_efficient_attention = use_memory_efficient_attention
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
if self.use_memory_efficient_attention:
assert self.memory_efficient_attention is not None, 'please install xformers'
if self.config.unpad_inputs:
assert self.config.use_memory_efficient_attention, 'unpad only with xformers'
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: torch.FloatTensor,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
attention_scale: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
) -> Tuple[torch.Tensor, ...]:
shape_hd = (self.num_attention_heads, self.attention_head_size)
# qkv
if self.pack_qkv and qkv_inputs is None:
qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
else:
if qkv_inputs is None:
qkv_inputs = (hidden_states, hidden_states, hidden_states)
qkv_pack = [
getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
]
query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
if self.config.position_embedding_type == 'rope':
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
dtype = query_states.dtype
if self.config.logn_attention_scale and attention_scale is not None:
# https://kexue.fm/archives/8823
query_states = query_states * attention_scale.to(dtype)
if padding_inputs is not None:
query_states = pad_input(query_states.squeeze(), *padding_inputs)
key_states = pad_input(key_states.squeeze(), *padding_inputs)
value_states = pad_input(value_states.squeeze(), *padding_inputs)
if self.use_memory_efficient_attention:
assert self.memory_efficient_attention is not None, "xformers is not loaded"
assert output_attentions is False, "memory_efficient_attention do not output attentions"
assert head_mask is None, "Not support yet"
attention_probs = None
if torch.is_tensor(attention_bias):
attention_bias = attention_bias.to(dtype)
context_layer = self.memory_efficient_attention(
query_states,
key_states,
value_states,
attn_bias=attention_bias,
p=self.dropout.p
)
else:
context_layer = self._attention(query_states, key_states, value_states, attention_bias, head_mask)
if padding_inputs is not None:
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
# output proj
attn_output = self.o_proj(context_layer)
# add attentions if we output them
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
return outputs
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
"""
Args:
q/k/v: (B, L, n_head, head_dim),
Returns:
attn_output: (B L, n_head, head_dim)
"""
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_bias is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_bias
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_states)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
return context_layer
class NewSdpaAttention(NewAttention):
"""
New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
def __init__(self, config: NewConfig, **kwargs):
super().__init__(config, **kwargs)
torch.backends.cuda.enable_mem_efficient_sdp(False)
logger.warning(
"Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
"`use_memory_efficient_attention=True` if it expected to use."
)
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states.transpose(1, 2),
key_states.transpose(1, 2),
value_states.transpose(1, 2),
attn_mask=attention_bias,
dropout_p=self.dropout.p if self.training else 0.0,
)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
return attn_output
NEW_ATTENTION_CLASSES = {
"eager": NewAttention,
# "flash_attention_2": , # TODO: xformers will dispatch to flash_attn
"sdpa": NewSdpaAttention,
}
class NewGatedMLP(nn.Module):
"""
GLU Variants Improve Transformer.
"""
def __init__(self, config: NewConfig):
super().__init__()
self.intermediate_size = config.intermediate_size
self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
self.act_fn = ACT2FN[config.hidden_act]
if config.hidden_dropout_prob > 0:
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
else:
self.hidden_dropout = None
def forward(self, hidden_states):
up_gate = self.up_gate_proj(hidden_states)
up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
gate = self.act_fn(gate)
gated_states = gate * up_states
if self.hidden_dropout is not None:
gated_states = self.hidden_dropout(gated_states)
down_states = self.down_proj(gated_states)
return down_states
class NewLayer(nn.Module):
def __init__(
self,
config: NewConfig,
pack_qkv=None,
use_memory_efficient_attention=None,
attn_implementation=None
):
super().__init__()
if attn_implementation is None:
attn_implementation = config._attn_implementation
if attn_implementation != 'eager':
use_memory_efficient_attention = False
self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
)
self.mlp = NewGatedMLP(config)
ln_class = LAYER_NORM[config.layer_norm_type]
self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
if config.hidden_dropout_prob > 0:
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
else:
self.hidden_dropout = None
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: torch.FloatTensor,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
attention_scale: Optional[torch.FloatTensor] = None,
subset_indices: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
padding_inputs: Optional[Tuple] = None,
) -> Tuple[torch.Tensor, ...]:
# Multi head self attention
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
attention_outputs = self.attention(
hidden_states,
attention_bias,
rope_embeds,
attention_scale,
head_mask,
output_attentions=output_attentions,
qkv_inputs=qkv_inputs,
padding_inputs=padding_inputs,
)
hidden_states = attention_outputs[0]
if self.hidden_dropout is not None:
hidden_states = self.hidden_dropout(hidden_states)
hidden_states = residual + hidden_states
# In pretraining, after the attention of last layer, we only need the masked tokens.
if subset_indices is not None:
hidden_states = hidden_states[subset_indices]
hidden_states = self.attn_ln(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.mlp(hidden_states)
if self.hidden_dropout is not None:
hidden_states = self.hidden_dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.mlp_ln(hidden_states)
# add self attentions if we output attention weights
outputs = (hidden_states,) + attention_outputs[1:]
return outputs
class NewEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: Optional[torch.FloatTensor] = None,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
attention_scale: Optional[torch.FloatTensor] = None,
subset_indices: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if i >= len(self.layer) - 1:
layer_subset_indices = subset_indices
else:
layer_subset_indices = None
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_bias,
rope_embeds,
attention_scale,
layer_subset_indices,
layer_head_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_bias,
rope_embeds,
attention_scale,
layer_subset_indices,
layer_head_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
class NewPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class NewPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = NewConfig
base_model_prefix = "new"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class NewModel(NewPreTrainedModel):
"""
The bare New Model transformer outputting raw hidden-states without any specific head on top.
"""
def __init__(self, config: NewConfig, add_pooling_layer=False):
super().__init__(config)
self.config = config
self.embeddings = NewEmbeddings(config)
self.encoder = NewEncoder(config)
self.pooler = NewPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
length: Optional[List[int]] = None,
subset_indices: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
r"""
length (`list` of length `batch_size`, *optional*):
If is `None`, return padded `last_hidden_state`.
subset_indices ():
pass
unpad_inputs (`bool`, *optional*):
pass
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
output_padded = length is None
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# TODO: not used
# # Prepare head mask if needed
# # 1.0 in head_mask indicate we keep the head
# # attention_probs has shape bsz x n_heads x N x N
# # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# Get embeddings, may unpad them
(embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
unpad_inputs,
input_ids=input_ids,
attention_mask=attention_mask,
length=length,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds
)
batch_size, seq_length = input_shape
if unpad_inputs:
assert self.config.use_memory_efficient_attention
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length,device=self.device)
else:
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
attention_bias = self.get_extended_attention_mask(attention_mask, input_shape,device=self.device)
if self.config.use_memory_efficient_attention:
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
if self.config.logn_attention_scale:
# attention scale log_512(input_len)
attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
# inference-time logn scale need clip 1
if self.config.logn_attention_clip1:
attention_scale.clip_(1)
attention_scale = attention_scale[:, None, None, None]
else:
attention_scale = None
encoder_outputs = self.encoder(
embedding_output,
attention_bias=attention_bias,
rope_embeds=rope_embeds,
attention_scale=attention_scale,
subset_indices=subset_indices,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if unpad_inputs and output_padded:
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
sequence_output = pad_input(
sequence_output.squeeze(), indices, batch_size, seq_length
)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class NewLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act]
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.norm(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class NewForMaskedLM(NewPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
def __init__(self, config: NewConfig):
super().__init__(config)
self.new = NewModel(config, add_pooling_layer=False)
self.lm_head = NewLMPredictionHead(config)
self.loss_fct = nn.CrossEntropyLoss()
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is None or not self.new.config.unpad_inputs:
length = None
subset_indices = None
else:
length = attention_mask.sum(-1).tolist()
labels = labels[attention_mask.bool()].unsqueeze(0)
subset_indices = labels > -100
outputs = self.new(
input_ids,
attention_mask=attention_mask,
length=length,
subset_indices=subset_indices,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
if subset_indices is None:
mask = attention_mask.bool()
prediction_scores = prediction_scores[mask]
labels = labels[mask]
else:
labels = labels[subset_indices]
masked_lm_loss = self.loss_fct(prediction_scores, labels)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NewForSequenceClassification(NewPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.new = NewModel(config, add_pooling_layer=True)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.new(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NewForMultipleChoice(NewPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.new = NewModel(config, add_pooling_layer=True)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.new(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NewForTokenClassification(NewPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.new = NewModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.new(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NewForQuestionAnswering(NewPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.new = NewModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.new(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
unpad_inputs=unpad_inputs,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)