jeromecondere commited on
Commit
4262738
·
verified ·
1 Parent(s): 82ce4c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -166
README.md CHANGED
@@ -3,197 +3,98 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
3
  tags: []
4
  ---
5
 
6
+ # Model Card for Meta-Llama-3-8B-for-bank
 
 
 
7
 
8
+ This model, **Meta-Llama-3-8B-for-bank**, is a fine-tuned version of the `meta-llama/Meta-Llama-3-8B-Instruct` model. It is optimized for financial service-related tasks, enabling users to interact with the model using natural language for common financial operations such as balance inquiries, retrieving stock lists, buying stocks, and performing deposit/withdrawal transactions.
9
 
10
  ## Model Details
11
 
12
  ### Model Description
13
 
14
+ - **Model Name**: Meta-Llama-3-8B-for-bank
15
+ - **Base Model**: `meta-llama/Meta-Llama-3-8B-Instruct`
16
+ - **Fine-tuning Data**: Custom financial chat examples
17
+ - **Version**: 1.0
18
+ - **License**: [Model License (if any)]
19
+ - **Language**: English
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ ### Model Type
22
 
23
+ - **Architecture**: LLaMA-3
24
+ - **Type**: Instruction-based language model
25
 
26
+ ### Model Usage
27
 
28
+ This model is designed for financial service tasks such as:
29
 
30
+ - **Balance Inquiry**:
31
+ - *Example*: "Can you provide the current balance for my account?"
32
+ - **Stock List Retrieval**:
33
+ - *Example*: "Can you provide me with a list of my stocks?"
34
+ - **Stock Purchase**:
35
+ - *Example*: "I'd like to buy stocks worth $1,000.00 in Tesla."
36
+ - **Deposit Transactions**:
37
+ - *Example*: "I'd like to deposit $500.00 into my account."
38
+ - **Withdrawal Transactions**:
39
+ - *Example*: "I'd like to withdraw $200.00 from my account."
40
+ - **Transaction History**:
41
+ - *Example*: "I would like to view my transactions. Can you provide it?"
42
 
43
+ ### Inputs and Outputs
44
 
45
+ - **Inputs**: Natural language queries related to financial services.
46
+ - **Outputs**: Textual responses or actions based on the input query.
47
 
48
+ ### Fine-tuning
49
 
50
+ This model has been fine-tuned with a dataset specifically created to simulate financial service interactions, covering a variety of questions related to account management and stock trading.
51
 
52
+ ## Intended Use
53
 
54
+ This model is intended for integration into financial chatbots, virtual assistants, or other systems requiring automated handling of financial queries.
55
 
56
+ ## Limitations
57
 
58
+ - **Domain Specificity**: The model may not perform well outside financial-related tasks.
59
+ - **Misinterpretation Risks**: There is a potential risk of misunderstanding complex or ambiguous queries.
60
 
61
+ ## Ethical Considerations
62
 
63
+ - **Bias**: Trained on synthetic data, the model may not represent all user demographics.
64
+ - **Privacy**: The model should be used in compliance with financial privacy regulations.
65
 
66
+ ## How to Use
67
 
68
+ ```python
69
+ from transformers import AutoModelForCausalLM, AutoTokenizer
70
 
71
+ # Load tokenizer and model
72
+ tokenizer = AutoTokenizer.from_pretrained("jeromecondere/Meta-Llama-3-8B-for-bank")
73
+ model = AutoModelForCausalLM.from_pretrained("jeromecondere/Meta-Llama-3-8B-for-bank").to("cuda")
74
 
75
+ # Example of usage
76
+ name = 'Walter Sensei'
77
+ company = 'Amazon Inc.'
78
+ stock_value = 42.24
79
+ messages = [
80
+ {'role': 'system', 'content': f'Hi {name}, I\'m your assistant how can I help you'},
81
+ {"role": "user", "content": f"yo, can you just give me the balance of my account?"}
82
+ ]
83
 
84
+ # Prepare the message using the chat template
85
+ res1 = tokenizer.apply_chat_template(messages, tokenize=False)
86
+ print(res1+'\n\n')
87
 
88
+ # Prepare the messages for the model
89
+ input_ids = tokenizer.apply_chat_template(messages, truncation=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
90
 
91
+ # Inference
92
+ outputs = model.generate(
93
+ input_ids=input_ids,
94
+ max_new_tokens=100,
95
+ do_sample=True,
96
+ temperature=0.1,
97
+ top_k=50,
98
+ top_p=0.95
99
+ )
100
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])