--- base_model: meta-llama/Meta-Llama-3-8B-Instruct datasets: - jeromecondere/bank-chat library_name: transformers --- # Model Card for Model ID ## WIP If you just want the adapter instead - **jeromecondere/Meta-Llama-3-8B-for-bank** ([Link](https://huggingface.co/jeromecondere/Meta-Llama-3-8B-for-bank)) ## Model Details ### Model Description - **Developed by:** Jerome Condere - **Finetuned from model :** Meta-Llama-3-8B-Instruct ## How to use it? ```python import os import torch from datasets import load_dataset, Dataset, DatasetDict import pandas as pd import numpy as np import json from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, pipeline ) merged_model_id = 'jeromecondere/merged-llama-v3-for-bank' merged_model = AutoModelForCausalLM.from_pretrained( merged_model_id, torch_dtype=torch.bfloat16, device_map= "cuda" ) tokenizer = AutoTokenizer.from_pretrained(merged_model_id, use_fast=True) name = 'Yalat Sensei' company = 'Google Corp.' stock_value = 42.24 messages = [ {'role': 'system', 'content': f'Hi {name}, I\'m your assistant how can I help you\n'}, {"role": "user", "content": f"I'd like to buy stocks worth {stock_value:.2f} in {company}.\n"}, {"role": "system", "content": f"Sure, we have purchased stocks worth ###StockValue({stock_value:.2f}) in ###Company({company}) for you.\n"}, {"role": "user", "content": f"Now I want to see my balance, hurry up!\n"}, {"role": "system", "content": f"Sure, here's your balance ###Balance\n"}, {"role": "user", "content": f"Again, my balance?\n"}, {"role": "system", "content": f"We have your account details. Your balance is: ###Balance"}, {"role": "user", "content": f"Okay now, I want my list of stocks"} ] # prepare the messages for the model input_ids = tokenizer.apply_chat_template(messages, truncation=True, add_generation_prompt=True, return_tensors="pt").to("cuda") # inference outputs = merged_model.generate( input_ids=input_ids, max_new_tokens=120, #do_sample=True, temperature=0.5, top_k=50, top_p=0.95 ) print(tokenizer.batch_decode(outputs)[0]) ``` ## Full integration in a sagemaker environment To see an integration of this model check [this github repo](https://github.com/jeromeCondere/my-silly-bank)