File size: 4,273 Bytes
e7cb0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43326bd
 
 
e7cb0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: apache-2.0
base_model: microsoft/resnet-152
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Dogs-Breed-Image-Classification-V2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8408163265306122
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Dogs-Breed-Image-Classification-V2

This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the [Standford dogs dataset](https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset.).
It achieves the following results on the evaluation set:
- Loss: 1.0115
- Accuracy: 0.8408

## Model description

- [Link to the fine-tuned model using resnet-50](https://huggingface.co/jhoppanne/Dogs-Breed-Image-Classification-V0)
- [Link to the fine-tuned model using resnet-101](https://huggingface.co/jhoppanne/Dogs-Breed-Image-Classification-V1)

This model was trained using dataset from [Kaggle - Standford dogs dataset](https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset.)

Quotes from the website:
The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world. This dataset has been built using images and annotation from ImageNet for the task of fine-grained image categorization. It was originally collected for fine-grain image categorization, a challenging problem as certain dog breeds have near identical features or differ in colour and age.

citation:
Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao and Li Fei-Fei. Novel dataset for Fine-Grained Image Categorization. First Workshop on Fine-Grained Visual Categorization (FGVC), IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011. [pdf] [poster] [BibTex]

Secondary:
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009. [pdf] [BibTex]
## Intended uses & limitations

This model is fined tune solely for classifiying 120 species of dogs.

## Training and evaluation data

75% training data, 25% testing data.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 483  | 4.6525          | 0.7382   |
| 4.7329        | 2.0   | 966  | 4.3558          | 0.7298   |
| 4.5033        | 3.0   | 1449 | 3.9568          | 0.7471   |
| 4.1405        | 4.0   | 1932 | 3.5160          | 0.7782   |
| 3.7176        | 5.0   | 2415 | 3.0805          | 0.7946   |
| 3.293         | 6.0   | 2898 | 2.6907          | 0.8021   |
| 2.8898        | 7.0   | 3381 | 2.3044          | 0.8126   |
| 2.5343        | 8.0   | 3864 | 2.0091          | 0.8177   |
| 2.2188        | 9.0   | 4347 | 1.7910          | 0.8126   |
| 1.9698        | 10.0  | 4830 | 1.6015          | 0.8194   |
| 1.7532        | 11.0  | 5313 | 1.4383          | 0.8220   |
| 1.586         | 12.0  | 5796 | 1.3355          | 0.8264   |
| 1.4533        | 13.0  | 6279 | 1.2467          | 0.8260   |
| 1.336         | 14.0  | 6762 | 1.1575          | 0.8313   |
| 1.2641        | 15.0  | 7245 | 1.1038          | 0.8321   |
| 1.185         | 16.0  | 7728 | 1.0606          | 0.8395   |
| 1.1329        | 17.0  | 8211 | 1.0178          | 0.8398   |
| 1.0977        | 18.0  | 8694 | 1.0115          | 0.8408   |
| 1.0732        | 19.0  | 9177 | 0.9945          | 0.8381   |
| 1.0508        | 20.0  | 9660 | 0.9930          | 0.8393   |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.3.0
- Datasets 2.15.0
- Tokenizers 0.15.1