File size: 76,891 Bytes
a0b5907
fa7ed0f
a0b5907
 
 
b1eaec8
 
 
 
 
 
a0b5907
 
 
f90ff9d
a48fa5a
a0b5907
 
 
 
 
b1eaec8
a0b5907
f90ff9d
 
a0b5907
 
 
 
 
 
f90ff9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1eaec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f90ff9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b5907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1eaec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b5907
 
 
 
 
f90ff9d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
from dataclasses import dataclass
import dataclasses
from typing import List, Optional, Tuple, Union
import ast
import re
from enum import auto, Enum
import requests
from PIL import Image
from io import BytesIO
import base64
import time

import torch
import torch.utils.checkpoint
from torch import nn, Tensor
from torch.nn import functional as F

from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers import CLIPVisionModel, CLIPImageProcessor,SiglipVisionModel, SiglipImageProcessor
from transformers import AutoConfig, AutoModelForCausalLM

from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN

# from tinyllava.utils.data_utils import get_value_from_kwargs
CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15

LOGDIR = "."
import os
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#

from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
)
from transformers.utils import logging

logger = logging.get_logger(__name__)

# this import has to be relative, otherwise, when setting trust_remote_code=True
# huggingface transformers won't be able to load the module correctly
from numbers import Number
from typing import List, Optional, Union

import numpy as np
from transformers import PretrainedConfig, AutoTokenizer



logger = logging.get_logger(__name__)

# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"

CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()
    MPT = auto()
    PLAIN = auto()
    LLAMA_2 = auto()
    TINY_LLAMA = auto()
    QWEN_2 = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "###"
    sep2: str = None
    version: str = "Unknown"

    skip_next: bool = False

    def get_prompt(self):
        messages = self.messages
        if len(messages) > 0 and type(messages[0][1]) is tuple:
            messages = self.messages.copy()
            init_role, init_msg = messages[0].copy()
            init_msg = init_msg[0].replace("<image>", "").strip()
            if 'mmtag' in self.version:
                messages[0] = (init_role, init_msg)
                messages.insert(0, (self.roles[0], "<Image><image></Image>"))
                messages.insert(1, (self.roles[1], "Received."))
            else:
                messages[0] = (init_role, "<image>\n" + init_msg)

        if self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(messages):
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

        return ret

    def append_message(self, role, message):
        self.messages.append([role, message])

    def copy(self):
        return Conversation(
            system=self.system,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            version=self.version)




conv_phi_v0 = Conversation(
    system="A chat between a curious user and an artificial intelligence assistant. "
           "The assistant gives helpful, detailed, and polite answers to the user's questions.",
    roles=("USER", "ASSISTANT"),
    version="phi",
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.TWO,
    sep=" ",
    sep2="<|endoftext|>",
)


def load_image_from_base64(image):
    return Image.open(BytesIO(base64.b64decode(image)))


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


def process_images(images, image_processor, model_cfg):
    image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
    new_images = []
    if image_aspect_ratio == 'pad':
        for image in images:
            image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
            image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
            new_images.append(image)
    else:
        return image_processor(images, return_tensors='pt')['pixel_values']
    if all(x.shape == new_images[0].shape for x in new_images):
        new_images = torch.stack(new_images, dim=0)
    return new_images


def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f'Unsupported tensor type: {return_tensors}')
    return input_ids

def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


def make_divisible(
    v: Union[float, int],
    divisor: Optional[int] = 8,
    min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by the divisor
    It can be seen at:
    https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
    Args:
        v: input value
        divisor: default to 8
        min_value: minimum divisor value
    Returns:
        new_v: new divisible value
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


def compute_heads(model_dim: int, head_dim: int) -> int:
    """Compute the number of heads.
    Args:
        model_dim: Model dimension.
        head_dim: Head dimension.
    Returns:
        An integer denoting number of heads in multi-head attention is returned.
    Raises:
        ValueError: if model dimension is not divisible by head dimension.
    """
    if model_dim % head_dim == 0:
        return model_dim // head_dim
    else:
        raise ValueError(
            f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}."
        )


OpenELM_CONFIGS = {
    "OpenELM-270M": dict(
        num_transformer_layers=16,
        model_dim=1280,
        head_dim=64,
        num_gqa_groups=4,
        normalize_qk_projections=True,
        share_input_output_layers=True,
        # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
        ffn_multipliers=(0.5, 4.0),
        qkv_multipliers=(0.5, 1.0),
    ),
    "OpenELM-450M": dict(
        num_transformer_layers=20,
        model_dim=1536,
        head_dim=64,
        num_gqa_groups=4,
        normalize_qk_projections=True,
        share_input_output_layers=True,
        # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
        ffn_multipliers=(0.5, 4.0),
        qkv_multipliers=(0.5, 1.0),
    ),
    "OpenELM-1_1B": dict(
        num_transformer_layers=28,
        model_dim=2048,
        head_dim=64,
        num_gqa_groups=4,
        normalize_qk_projections=True,
        share_input_output_layers=True,
        # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
        ffn_multipliers=(0.5, 4.0),
        qkv_multipliers=(0.5, 1.0),
    ),
    "OpenELM-3B": dict(
        num_transformer_layers=36,
        model_dim=3072,
        head_dim=128,
        num_gqa_groups=4,
        normalize_qk_projections=True,
        share_input_output_layers=True,
        # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
        ffn_multipliers=(0.5, 4.0),
        qkv_multipliers=(0.5, 1.0),
    ),
}


class OpenELMConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the OpenELM model.
        max_context_length (`int`, *optional*, defaults to 2048):
            Maximum number of input tokens.
        num_transformer_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer decoder.
        model_dim (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations.
        head_dim (`int`, *optional*, defaults to 128):
            The attention head dimension.
        qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0):
            If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions,
            resulting in uniform allocation of parameters.
            If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions
            assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer.
            This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
        num_query_heads (`Union[int, None]`, *optional*, defaults to None):
            The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`.
        num_gqa_groups (`int`, *optional*, defaults to 1):
            This variable allows to switch between multi-head attention, group query attention, and multi-query attention.
            When num_gqa_groups == 1, then it is multi-head attention.
            When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention
            When num_gqa_groups == num_heads, then it is multi-query attention
        ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0):
            Feed-forward network (FFN) multipliers.
            If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions,
            resulting in uniform allocation of parameters.
            If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions
            assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer.
            This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
        ffn_with_glu (`bool`, *optional*, defaults to True):
            Whether to use FFN with Gated Linear Unit (GLU)
        ffn_dim_divisor (`int`, *optional*, defaults to 256):
            The ffn layer dimension divisor.
        activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`):
            The non-linear activation function (function or string) in the decoder.
        normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`):
            Type of normalization layer.
        normalize_qk_projections (`bool`, *optional*, defaults to False):
            Whether to normalize queries and keys after projections
        share_input_output_layers (`bool`, *optional*, defaults to False):
            Whether to share the embedding between input and output linear layer
        rope_freq_constant (`int`, *optional*, defaults to 10000):
            The base period of the RoPE embeddings.
        rope_max_length (`int`, *optional*, defaults to 4096):
            That rope_max_length is set to twice of max_context_length.
            This allows flexibility in token lengths during training or fine-tuning.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 1):
            End of stream token id.
    """

    model_type = "openelm"

    def __init__(
        self,
        vocab_size: int = 32000,
        max_context_length: int = 2048,
        num_transformer_layers: int = 12,
        model_dim: int = 2048,
        head_dim: int = 128,
        qkv_multipliers: Union[Number, List[Number]] = 1.0,
        num_query_heads: Union[int, None] = None,
        num_gqa_groups: int = 1,
        ffn_multipliers: Union[Number, List[Number]] = 4.0,
        ffn_with_glu: bool = True,
        ffn_dim_divisor: int = 256,
        activation_fn_name: str = "swish",
        normalization_layer_name: str = "rms_norm",
        normalize_qk_projections: bool = False,
        share_input_output_layers: bool = False,
        rope_freq_constant: int = 10000,
        rope_max_length: int = 4096,
        initializer_range: float = 0.02,
        use_cache: bool = True,
        bos_token_id: int = 1,
        eos_token_id: int = 2,
        **kwargs,
    ) -> None:
        self.vocab_size = vocab_size
        self.max_context_length = max_context_length
        self.num_transformer_layers = num_transformer_layers
        self.model_dim = model_dim
        self.head_dim = head_dim
        self.qkv_multipliers = qkv_multipliers
        self.num_query_heads = num_query_heads
        self.num_gqa_groups = num_gqa_groups
        self.ffn_multipliers = ffn_multipliers
        self.ffn_with_glu = ffn_with_glu
        self.ffn_dim_divisor = ffn_dim_divisor
        self.activation_fn_name = activation_fn_name
        self.normalization_layer_name = normalization_layer_name
        self.normalize_qk_projections = normalize_qk_projections
        self.share_input_output_layers = share_input_output_layers
        self.rope_freq_constant = rope_freq_constant
        self.rope_max_length = rope_max_length
        self.num_query_heads = (
            compute_heads(model_dim=model_dim, head_dim=head_dim)
            if num_query_heads is None
            else num_query_heads
        )
        self.initializer_range = initializer_range

        self.__post_init__()
        super().__init__(
            use_cache=use_cache,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )

    def __post_init__(self) -> None:
        if self.num_gqa_groups is not None:
            head_multiple_of = self.num_gqa_groups
        else:
            head_multiple_of = 2

        if isinstance(self.qkv_multipliers, Number):
            # All attention layers have the same latent dimensions, resulting in uniform allocation of parameters.
            qkv_dim = make_divisible(
                self.model_dim * self.qkv_multipliers,
                divisor=self.head_dim * head_multiple_of,
            )
            query_dims = [int(qkv_dim)] * self.num_transformer_layers

        elif (
            isinstance(self.qkv_multipliers, (tuple, list))
            and len(self.qkv_multipliers) == 2
        ):
            # Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1].
            # This results in variable allocation of parameters in attention layer.
            # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
            qkv_multipliers = [
                round(v, 2)
                for v in np.linspace(
                    self.qkv_multipliers[0],
                    self.qkv_multipliers[1],
                    num=self.num_transformer_layers,
                    dtype=float,
                )
            ]
            # Make sure that scaled model dimension is divisible by scaled head dimension.
            query_dims = [
                int(
                    make_divisible(
                        self.model_dim * m, divisor=self.head_dim * head_multiple_of
                    )
                )
                for m in qkv_multipliers
            ]
        else:
            raise NotImplementedError(
                f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
            )

        # compute the number of query, key, and value heads
        # For multi-head and multi-query attention, the number of heads for query, key, and value are the same.
        # For group query attention, the number of key and value heads are the same.
        self.num_query_heads = [
            int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims
        ]
        self.num_kv_heads = [
            q_heads // self.num_gqa_groups for q_heads in self.num_query_heads
        ]

        # Feed-forward network (FFN) multipliers
        if isinstance(self.ffn_multipliers, Number):
            # All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters.
            self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers
        elif isinstance(self.ffn_multipliers, (tuple, list)):
            # Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1].
            # This results in variable allocation of parameters in FFN layer.
            # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
            if len(self.ffn_multipliers) == 2:
                self.ffn_multipliers = [
                    round(v, 2)
                    for v in np.linspace(
                        self.ffn_multipliers[0],
                        self.ffn_multipliers[1],
                        num=self.num_transformer_layers,
                        dtype=float,
                    )
                ]
            else:
                assert (
                    len(self.ffn_multipliers) == self.num_transformer_layers
                ), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}"
        else:
            raise NotImplementedError(
                f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
            )

        # check num_query_heads divisible by num_kv_heads for every layer
        for layer_idx in range(len(query_dims)):
            assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0

class OpenELMRMSNorm(nn.Module):
    def __init__(self, num_features: int, eps: float = 1e-6):
        """
        Initialize the OpenELMRMSNorm normalization layer.
        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.
        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(num_features))
        self.num_features = num_features

    def _norm(self, x: Tensor) -> Tensor:
        """
        Apply the OpenELMRMSNorm normalization to the input tensor.
        Args:
            x (torch.Tensor): The input tensor.
        Returns:
            torch.Tensor: The normalized tensor.
        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x: Tensor) -> Tensor:
        """
        Forward pass through the OpenELMRMSNorm layer.
        Args:
            x (torch.Tensor): The input tensor.
        Returns:
            torch.Tensor: The output tensor after applying OpenELMRMSNorm.
        """
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

    def extra_repr(self) -> str:
        return (
            super().extra_repr() + f"num_features={self.num_features}, eps={self.eps}"
        )


class OpenELMPreTrainedModel(PreTrainedModel):
    config_class = OpenELMConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["OpenELMDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, *inputs, **kwargs) -> None:
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module: nn.Module) -> None:
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, OpenELMRMSNorm):
            module.weight.data.fill_(1.0)


def _rotate_half(x: Tensor) -> Tensor:
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


def _apply_rotary_pos_emb(x: Tensor, pos_sin: Tensor, pos_cos: Tensor) -> Tensor:
    return (x * pos_cos) + (_rotate_half(x) * pos_sin)


class OpenELMRotaryEmbedding(torch.nn.Module):
    """
    The rotary position embeddings (aka RoPE) from `RoFormer <https://arxiv.org/abs/2104.09864>`_.
    RoPE encodes the position information of tokens using a rotation matrix, and is able to capture
    explicit relative positional dependencies.
    Args:
        model_dim: The dimensionality of the model's hidden state.
        max_seq_length: Maximum sequence length.
        freq_constant: A constant used for computing frequencies.
    """

    def __init__(
        self, model_dim: int, max_seq_length: int, freq_constant: int = 10000
    ) -> None:
        inv_freq = 1.0 / (
            freq_constant
            ** (torch.arange(0, model_dim, 2, dtype=torch.float32) / model_dim)
        )
        super().__init__()

        self.model_dim = model_dim
        self.freq_constant = freq_constant
        self.max_seq_length = max_seq_length

        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self._cached_cos = None
        self._cached_sin = None
        self._cached_seq_length = max_seq_length
        self._compute_sin_cos_embeddings(max_seq_length)

    def extra_repr(self) -> str:
        return f"\tmodel_dim={self.model_dim}, max_seq_length={self.max_seq_length}, freq_constant={self.freq_constant}"

    def _compute_sin_cos_embeddings(
        self,
        key_len: int,
        key_device: torch.device = torch.device("cpu"),
        key_dtype: torch.dtype = torch.float32,
    ) -> None:
        """
        Compute sine and cos embeddings.
        Args:
            key_len: Number of tokens in the key embeddings in the transformer model.
            device: Device where the key embeddings are stored.
            key_dtype: Data type of the key embeddings.
        Returns:
            None
        ...note:
            We recalculate the sine and cosine embeddings if any of the following conditions are met:
                1. The number of tokens in key embeddings are greater than the cached sequence length.
                2. Sine and cosine caches are empty.
                3. The device and data type of sine and cosine embeddings does not match with the key embeddings.
        """
        if (
            key_len > self._cached_seq_length
            or self._cached_cos is None
            or (self._cached_cos is not None and self._cached_cos.device != key_device)
            or (self._cached_cos is not None and self._cached_cos.dtype != key_dtype)
            or self._cached_sin is None
            or (self._cached_sin is not None and self._cached_sin.device != key_device)
            or (self._cached_sin is not None and self._cached_sin.dtype != key_dtype)
        ):
            self._cached_seq_length = max(key_len, self._cached_seq_length)

            # The shape of 'pos_index' is [number of key tokens]
            pos_index = torch.arange(
                self._cached_seq_length,
                dtype=torch.float32,
                device=self.inv_freq.device,
            )
            # The shape of 'pos_index_theta' is [number of key tokens, model dimension]
            pos_index_theta = torch.einsum("i,j->ij", pos_index, self.inv_freq)
            # The shape of 'emb' is [number of key tokens, model dimension]
            emb = torch.cat((pos_index_theta, pos_index_theta), dim=-1)

            # the shape of cos and sin embeddings is [number of key tokens, model_dim]
            cos_emb = emb.cos().to(dtype=key_dtype, device=key_device)
            sin_emb = emb.sin().to(dtype=key_dtype, device=key_device)

            # the shape of cached cos and sin embeddings is [1, 1, number of key tokens, model_dim]
            self._cached_cos = cos_emb[None, None, :, :]
            self._cached_sin = sin_emb[None, None, :, :]

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        The forward function of RoPE embeddings.
        Args:
            query: Query embeddings in the transformer model. The shape of query embeddings is
                [Batch, number of query heads, number of query tokens, model dimension].
            key: Key embeddings in the transformer model. The shape of key embeddings is
                [Batch, number of key heads, number of key tokens, model dimension].
        Returns:
            A tuple containing the query and key embeddings with positional information. The shape of the returned query
            and key embeddings is the same as the input query and key embeddings respectively.
        ...note:
            The RoPE embedding computation is done in full-precision. After the computation, input query and key tensors
            are casted to original input datatype.
        """
        dim = key.shape[-1]
        key_len = key.shape[2]
        query_len = query.shape[2]

        assert dim == self.model_dim
        assert key.device == query.device
        assert key.dtype == query.dtype

        # In the context of self-attention, the lengths of keys and queries are equal.
        # However, in generation tasks, such as predicting the next token in a sequence, the lengths of keys and queries
        # can differ. For instance, when employing key-value (KV) caching for sequence prediction, the keys
        # represent embeddings of previous tokens and the current token, while the query corresponds
        # to the embedding of the current token only.
        assert (
            key_len >= query_len
        ), "Number of keys has to be greater than or equal to number of queries."

        query_float = query.float()
        key_float = key.float()

        self._compute_sin_cos_embeddings(
            key_len, key_device=key_float.device, key_dtype=key_float.dtype
        )
        query_float = _apply_rotary_pos_emb(
            x=query_float,
            pos_sin=self._cached_sin[..., key_len - query_len : key_len, :],
            pos_cos=self._cached_cos[..., key_len - query_len : key_len, :],
        )
        key_float = _apply_rotary_pos_emb(
            x=key_float,
            pos_sin=self._cached_sin[..., :key_len, :],
            pos_cos=self._cached_cos[..., :key_len, :],
        )

        return query_float.type_as(query), key_float.type_as(key)


class OpenELMMultiHeadCausalAttention(nn.Module):
    def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
        super().__init__()
        self.layer_idx = layer_idx
        head_dim = config.head_dim
        q_heads = config.num_query_heads[layer_idx]
        k_heads = config.num_kv_heads[layer_idx]
        v_heads = config.num_kv_heads[layer_idx]

        self.qkv_proj = nn.Linear(
            in_features=config.model_dim,
            out_features=(q_heads + k_heads + v_heads) * head_dim,
            bias=False,
        )

        self.pos_embedding = OpenELMRotaryEmbedding(
            model_dim=config.head_dim,
            max_seq_length=config.rope_max_length,
            freq_constant=config.rope_freq_constant,
        )

        if config.normalize_qk_projections:
            self.q_norm = OpenELMRMSNorm(
                num_features=config.head_dim,
            )
            self.k_norm = OpenELMRMSNorm(
                num_features=config.head_dim,
            )
        else:
            self.q_norm = None
            self.k_norm = None

        self.out_proj = nn.Linear(
            in_features=q_heads * head_dim,
            out_features=config.model_dim,
            bias=False,
        )

        self.head_dim = config.head_dim
        self.num_q_heads = q_heads
        self.num_k_heads = k_heads
        self.num_v_heads = v_heads
        self.transformer_dim = config.model_dim
        self.num_groups = self.num_q_heads // self.num_k_heads

    def extra_repr(self) -> str:
        return (
            super().extra_repr()
            + f"query_heads={self.num_q_heads}, key_heads={self.num_k_heads}, value_heads={self.num_v_heads}"
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """
        Forward pass of multi-head self-attention.
        Args:
            hidden_states: Input tensor of the shape [batch size, sequence length, model dimension].
            past_key_value: Tensor storing the cached keys and values.
            output_attentions: output attention weights.
            use_cache: Specifies whether to use kv-cache for generation.
            cache_position: used for updating the kv-cache.
        Returns:
            The output of the same shape as the input, optionally with a tensor containing cached keys and values.
        """

        # scaled_dot_product_attention does not return attention weights, set output_attentions to False
        output_attentions = False
        batch_size, seq_length, d_model = hidden_states.size()

        # [B, S, d] --> [B, S, (q_h + k_h + v_h) * h]
        qkv = self.qkv_proj(hidden_states)
        # [B, S, (q_h + k_h + v_h) * h] --> [B, S, (q_h + k_h + v_h), h]
        qkv = qkv.reshape(
            batch_size,
            seq_length,
            self.num_q_heads + self.num_k_heads + self.num_v_heads,
            self.head_dim,
        )
        # [B, S, (q_h + k_h + v_h), h] --> [B, (q_h + k_h + v_h), S, h]
        qkv = qkv.transpose(1, 2)
        # [B, (q_h + k_h + v_h), S, h] --> [B, q_h, S h], [B, k_h, S, h], [B, v_h, S, h]
        queries, keys, values = qkv.split(
            [self.num_q_heads, self.num_k_heads, self.num_v_heads], dim=1
        )

        if self.q_norm is not None:
            queries = self.q_norm(queries)

        if self.k_norm is not None:
            keys = self.k_norm(keys)

        past_key_value = getattr(self, "past_key_value", past_key_value)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; position_ids needed for the static cache
            # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            cache_kwargs = {"cache_position": cache_position}
            keys, values = past_key_value.update(
                keys, values, self.layer_idx, cache_kwargs
            )

        # Add positional embedding
        queries, keys = self.pos_embedding(queries, keys)

        if self.num_groups != 1:
            # GQA
            # [B, k_h, S, h] --> [B, q_h, S, h]
            keys = keys.repeat_interleave(self.num_groups, dim=1)
            # [B, v_h, S, h] --> [B, q_h, S, h]
            values = values.repeat_interleave(self.num_groups, dim=1)

        causal_mask = attention_mask
        if attention_mask is not None and cache_position is not None:
            causal_mask = causal_mask[:, :, cache_position, : keys.shape[-2]]

        attn_output = F.scaled_dot_product_attention(
            queries,
            keys,
            values,
            attn_mask=causal_mask,
            dropout_p=0,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(
            batch_size, seq_length, self.num_q_heads * self.head_dim
        )
        attn_output = self.out_proj(attn_output)
        if not output_attentions:
            attn_weights = None
        return attn_output, attn_weights, past_key_value


class OpenELMFeedForwardNetwork(nn.Module):
    def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
        super().__init__()
        ffn_multiplier = config.ffn_multipliers[layer_idx]
        intermediate_dim = int(
            make_divisible(
                ffn_multiplier * config.model_dim,
                divisor=config.ffn_dim_divisor,
            )
        )
        if config.ffn_with_glu:
            # FFN with Gated linear unit, as described in https://arxiv.org/abs/2002.05202v1.
            self.proj_1 = nn.Linear(
                in_features=config.model_dim,
                out_features=2 * intermediate_dim,
                bias=False,
            )
            self.proj_2 = nn.Linear(
                in_features=intermediate_dim,
                out_features=config.model_dim,
                bias=False,
            )
            self.ffn_with_glu = True
        else:
            # Standard FFN, as described in https://arxiv.org/abs/1706.03762
            self.proj_1 = nn.Linear(
                in_features=config.model_dim,
                out_features=intermediate_dim,
                bias=False,
            )
            self.proj_2 = nn.Linear(
                in_features=intermediate_dim,
                out_features=config.model_dim,
                bias=False,
            )
            self.ffn_with_glu = False

        self.act = ACT2FN[config.activation_fn_name]

    def extra_repr(self) -> str:
        return super().extra_repr() + f"(ffn_with_glu) : {self.ffn_with_glu}"

    def forward(self, x: Tensor) -> Tensor:
        """Forward function of FFN layer.
        Args:
            x: Input tensor of the shape [batch size, sequence length, model dimension].
        Returns:
            A tensor of the same shape as the input.
        """
        if self.ffn_with_glu:
            y_12 = self.proj_1(x)
            y_1, y_2 = y_12.chunk(2, dim=-1)
            y = self.act(y_1) * y_2
            return self.proj_2(y)
        else:
            return self.proj_2(self.act(self.proj_1(x)))


class OpenELMDecoderLayer(nn.Module):
    def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
        super().__init__()
        self.attn = OpenELMMultiHeadCausalAttention(config=config, layer_idx=layer_idx)
        self.ffn = OpenELMFeedForwardNetwork(config=config, layer_idx=layer_idx)
        self.ffn_norm = OpenELMRMSNorm(
            num_features=config.model_dim,
        )
        self.attn_norm = OpenELMRMSNorm(
            num_features=config.model_dim,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[
        torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
    ]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """
        residual = hidden_states
        hidden_states = self.attn_norm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.ffn_norm(hidden_states)
        hidden_states = self.ffn(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class OpenELMModel(OpenELMPreTrainedModel):
    config_class = OpenELMConfig

    def __init__(self, config: OpenELMConfig):
        super().__init__(config)
        self.config = config

        self.token_embeddings = nn.Embedding(
            embedding_dim=config.model_dim,
            num_embeddings=config.vocab_size,
        )

        self.layers = nn.ModuleList(
            OpenELMDecoderLayer(config=config, layer_idx=layer_idx)
            for layer_idx in range(config.num_transformer_layers)
        )
        self.norm = OpenELMRMSNorm(num_features=config.model_dim)
        if config.share_input_output_layers:
            self.classifier = None
        else:
            self.classifier = nn.Linear(
                in_features=config.model_dim,
                out_features=config.vocab_size,
                bias=False,
            )
        self.num_transformer_layers = config.num_transformer_layers
        self.gradient_checkpointing = False

        # Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
        # NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_context_length`.
        causal_mask = torch.full(
            (config.max_context_length, config.max_context_length),
            fill_value=True,
            dtype=torch.bool,
        )
        self.register_buffer(
            "causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
        )

        # Initialize weights and apply final processing
        self.post_init()
        self.reset_parameters(config=config)

    def get_input_embeddings(self):
        return self.token_embeddings

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.token_embeddings = new_embeddings

    def reset_parameters(self, config: OpenELMConfig) -> None:
        """Initialize the layers in Language Model
        The initialization scheme is followed, following `OPT <https://arxiv.org/pdf/2205.01068.pdf>`_.
        Args:
            use_megatron_std: Use standard deviation as described in Megatron-LM.
        Returns:
            None
        """
        for module in self.modules():
            if isinstance(module, nn.Linear):
                std = module.in_features**-0.5
                torch.nn.init.normal_(module.weight, mean=0.0, std=std)
                if module.bias is not None:
                    torch.nn.init.zeros_(module.bias)
            elif isinstance(module, nn.Embedding):
                std = module.embedding_dim**-0.5
                torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            elif isinstance(module, OpenELMRMSNorm):
                if module.weight is not None:
                    torch.nn.init.ones_(module.weight)
                if hasattr(module, "bias") and module.bias is not None:
                    torch.nn.init.zeros_(module.bias)

        model_dim = config.model_dim
        n_layers = config.num_transformer_layers
        std = (model_dim**-0.5) * ((2 * n_layers) ** -0.5)
        for param_name, param in self.named_parameters():
            if param_name.endswith("out_proj.weight") or param_name.endswith(
                "ffn.proj_2.weight"
            ):
                torch.nn.init.normal_(param, mean=0.0, std=std)

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.token_embeddings(input_ids)

        past_seen_tokens = 0
        if use_cache:  # kept for BC (cache positions)
            if not isinstance(past_key_values, StaticCache):
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_seen_tokens = past_key_values.get_seq_length()

        if cache_position is None:
            cache_position = torch.arange(
                past_seen_tokens,
                past_seen_tokens + inputs_embeds.shape[1],
                device=inputs_embeds.device,
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)

        # embed positions
        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = (
                next_decoder_cache.to_legacy_cache()
                if isinstance(next_decoder_cache, Cache)
                else next_decoder_cache
            )
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    def _update_causal_mask(self, attention_mask, input_tensor):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        batch_size, seq_length = input_tensor.shape[:2]
        dtype = input_tensor.dtype
        device = input_tensor.device

        # support going beyond cached `max_position_embedding`
        if seq_length > self.causal_mask.shape[-1]:
            causal_mask = torch.full(
                (2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]),
                fill_value=1,
            )
            self.register_buffer(
                "causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
            )

        # We use the current dtype to avoid any overflows
        min_dtype = torch.finfo(dtype).min
        causal_mask = (
            self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype)
            * min_dtype
        )

        causal_mask = causal_mask.to(dtype=dtype, device=device)
        if attention_mask is not None and attention_mask.dim() == 2:
            mask_length = attention_mask.shape[-1]
            padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
                :, None, None, :
            ].eq(0.0)
            causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(
                padding_mask, min_dtype
            )

        if self.config._attn_implementation == "sdpa" and attention_mask is not None:
            # For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
            is_tracing = (
                torch.jit.is_tracing()
                or isinstance(input_tensor, torch.fx.Proxy)
                or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
            )
            if not is_tracing and torch.any(attention_mask != 1):
                # Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
                # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
                # Details: https://github.com/pytorch/pytorch/issues/110213
                causal_mask = causal_mask.mul(
                    ~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True)
                ).to(dtype)

        return causal_mask


class OpenELMForCausalLM(OpenELMPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: OpenELMConfig):
        super().__init__(config)
        self.transformer = OpenELMModel(config)
        self.vocab_size = config.vocab_size
        if config.share_input_output_layers:
            self.lm_head = None
        else:
            self.lm_head = nn.Linear(config.model_dim, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.transformer.token_embeddings

    def set_input_embeddings(self, value):
        self.transformer.token_embeddings = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.transformer = decoder

    def get_decoder(self):
        return self.transformer

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.transformer(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        if self.lm_head is None:
            # shared
            logits = F.linear(
                hidden_states, weight=self.transformer.token_embeddings.weight
            )
        else:
            logits = self.lm_head(hidden_states)
        logits = logits[:, : self.config.vocab_size]
        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        **kwargs,
    ):
        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if (
                attention_mask is not None
                and attention_mask.shape[1] > input_ids.shape[1]
            ):
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        if self.generation_config.cache_implementation == "static":
            # generation with static cache
            cache_position = kwargs.get("cache_position", None)
            if cache_position is None:
                past_length = 0
            else:
                past_length = cache_position[-1] + 1
            input_ids = input_ids[:, past_length:]
            position_ids = position_ids[:, past_length:]

        # we should only keep a `cache_position` in generate, and do +=1.
        # same goes for position ids. Could also help with continued generation.
        cache_position = torch.arange(
            past_length,
            past_length + position_ids.shape[-1],
            device=position_ids.device,
        )

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
            # We could use `next_tokens` directly instead.
            model_inputs = {"input_ids": input_ids.contiguous()}

        model_inputs.update(
            {
                "position_ids": position_ids.contiguous(),
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx.to(past_state.device))
                    for past_state in layer_past
                ),
            )
        return reordered_past


ACT_TYPE = {
    'relu': nn.ReLU,
    'gelu': nn.GELU
}

class Connector(nn.Module):
    def __init__(self, config=None):
        super().__init__()
        mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
        act_type = config.connector_type.split('_')[-1]
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(ACT_TYPE[act_type]())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
            
        self._connector = nn.Sequential(*modules)
    
    def forward(self, x):
        return self._connector(x)

class VisionTower(nn.Module):
    def __init__(self, cfg, model_name_or_path = 'clip'):
        super().__init__()
        if 'clip' in model_name_or_path:
            self._vision_tower = CLIPVisionModel(cfg)
            self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path)
        else:
            self._vision_tower = SiglipVisionModel(cfg)
            self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path)
            
        self.config = cfg
        


    def forward(self, x, **kwargs):
        image_features = self._vision_tower(x, output_hidden_states=True)
        image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]

        if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
            image_features = image_features[:, 1:]
        elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")

        return image_features
        

    
    @property
    def vision_tower(self):
        return self._vision_tower
        
    @vision_tower.setter
    def vision_tower(self, vision_tower):
        self._vision_tower = vision_tower

def get_value_from_kwargs(kwargs, name):
    if name in kwargs:
        return kwargs.pop(name)
    else:
        return None
    


class TinyLlavaPreTrainedModel(PreTrainedModel):
    config_class = TinyLlavaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlavaVisionAttention"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True

    def _init_weights(self, module):
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def _supports_sdpa(self):
        return self.language_model._supports_sdpa


class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
    def __init__(self, config: TinyLlavaConfig):
        
        super().__init__(config)

        self.language_model = OpenELMForCausalLM(config.text_config)
        self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
        self.connector = Connector(config)
        self.post_init()

    
    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def tie_weights(self):
        return self.language_model.tie_weights()

    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                image_sizes
            )
        return self.language_model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
    
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_labels_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                image_sizes=image_sizes
            )
        else:
            inputs_embeds = self.language_model.get_input_embeddings()(inputs)

        return self.language_model.generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )
        
    def encode_images(self, images):
        kwargs = {}
        kwargs['vision_feature_layer'] = self.config.vision_feature_layer
        kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
        images = images.to(device=self.device, dtype=self.dtype)
        image_features = self.vision_tower(images, **kwargs)
        image_features = self.connector(image_features)
        return image_features
    
    
    
    def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
                                      inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        image_sizes = kwargs.pop("image_sizes", None)
        inputs = self.language_model.prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            inputs['images'] = images
        if image_sizes is not None:
            inputs['image_sizes'] = image_sizes
        return inputs
        
    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels,
        images, image_sizes=None
    ):
        vision_tower = self.vision_tower
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        
        image_features = self.encode_images(images)

        # TODO: image start / end is not implemented here to support pretraining.
        if getattr(self.config, 'tune_mm_mlp_adapter', False):
            raise NotImplementedError

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- FIXME
        _input_ids = input_ids
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []

            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))

            cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
        if tokenizer_model_max_length is not None:
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
                new_input_embeds_padded.append(torch.cat((
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
                    cur_new_embed
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((
                    cur_new_embed,
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
        
    def chat(
        self,
        prompt: str,
        tokenizer = None,
        image: str = None,
        max_new_tokens: int = 512,
        num_beams = 1,
        top_p=None,
        temperature=0
    ):
        image_processor = self.vision_tower._image_processor

        if image is not None:
            prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt 
        conv = conv_phi_v0.copy()
        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()
        if image is not None:
            image = load_image(image)
            image_tensor = process_images(image, image_processor, self.config).to(self.device)

        input_ids = (
            tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
            .unsqueeze(0).to(self.device)
        )
        # Generate
        stime = time.time()

        with torch.inference_mode():
            output_ids = self.generate(
                input_ids,
                images=image_tensor,
                do_sample=True if temperature > 0 else False,
                temperature=temperature,
                top_p=top_p,
                num_beams=num_beams,
                pad_token_id=tokenizer.pad_token_id,
                max_new_tokens=max_new_tokens,
                use_cache=True,
                # stopping_criteria=[stopping_criteria],
            )

        # print('inference over')
        generation_time = time.time() - stime
        outputs = tokenizer.batch_decode(
            output_ids, skip_special_tokens=True
        )[0]

        outputs = outputs.strip()

        return outputs, generation_time

    

            

AutoConfig.register("tinyllava", TinyLlavaConfig)        
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)