|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
import ast |
|
import re |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers import CLIPVisionModel, CLIPImageProcessor,SiglipVisionModel, SiglipImageProcessor |
|
|
|
from configuration import TinyLlavaConfig |
|
from utils import * |
|
from modeling_elm import OpenELMForCausalLM |
|
|
|
|
|
CONTROLLER_HEART_BEAT_EXPIRATION = 30 |
|
WORKER_HEART_BEAT_INTERVAL = 15 |
|
|
|
LOGDIR = "." |
|
import os |
|
|
|
ACT_TYPE = { |
|
'relu': nn.ReLU, |
|
'gelu': nn.GELU |
|
} |
|
|
|
class Connector(nn.Module): |
|
def __init__(self, config=None): |
|
super().__init__() |
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type) |
|
act_type = config.connector_type.split('_')[-1] |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(ACT_TYPE[act_type]()) |
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
|
|
|
self._connector = nn.Sequential(*modules) |
|
|
|
def forward(self, x): |
|
return self._connector(x) |
|
|
|
class VisionTower(nn.Module): |
|
def __init__(self, cfg, model_name_or_path = 'clip'): |
|
super().__init__() |
|
if 'clip' in model_name_or_path: |
|
self._vision_tower = CLIPVisionModel(cfg) |
|
self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path) |
|
else: |
|
self._vision_tower = SiglipVisionModel(cfg) |
|
self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path) |
|
|
|
self.config = cfg |
|
|
|
|
|
|
|
def forward(self, x, **kwargs): |
|
image_features = self._vision_tower(x, output_hidden_states=True) |
|
image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)] |
|
|
|
if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch': |
|
image_features = image_features[:, 1:] |
|
elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch': |
|
image_features = image_features |
|
else: |
|
raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}") |
|
|
|
return image_features |
|
|
|
|
|
|
|
@property |
|
def vision_tower(self): |
|
return self._vision_tower |
|
|
|
@vision_tower.setter |
|
def vision_tower(self, vision_tower): |
|
self._vision_tower = vision_tower |
|
|
|
def get_value_from_kwargs(kwargs, name): |
|
if name in kwargs: |
|
return kwargs.pop(name) |
|
else: |
|
return None |
|
|
|
|
|
|
|
class TinyLlavaPreTrainedModel(PreTrainedModel): |
|
config_class = TinyLlavaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LlavaVisionAttention"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
|
|
def _init_weights(self, module): |
|
std = ( |
|
self.config.initializer_range |
|
if hasattr(self.config, "initializer_range") |
|
else self.config.text_config.initializer_range |
|
) |
|
|
|
if hasattr(module, "class_embedding"): |
|
module.class_embedding.data.normal_(mean=0.0, std=std) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
return self.language_model._supports_sdpa |
|
|
|
|
|
class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel): |
|
def __init__(self, config: TinyLlavaConfig): |
|
|
|
super().__init__(config) |
|
|
|
self.language_model = OpenELMForCausalLM(config.text_config) |
|
self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path) |
|
self.connector = Connector(config) |
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[List[List[int]]] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images, |
|
image_sizes |
|
) |
|
return self.language_model.forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_sizes: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
position_ids = kwargs.pop("position_ids", None) |
|
attention_mask = kwargs.pop("attention_mask", None) |
|
if "inputs_embeds" in kwargs: |
|
raise NotImplementedError("`inputs_embeds` is not supported") |
|
|
|
if images is not None: |
|
( |
|
inputs, |
|
position_ids, |
|
attention_mask, |
|
_, |
|
inputs_embeds, |
|
_ |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
inputs, |
|
position_ids, |
|
attention_mask, |
|
None, |
|
None, |
|
images, |
|
image_sizes=image_sizes |
|
) |
|
else: |
|
inputs_embeds = self.language_model.get_input_embeddings()(inputs) |
|
|
|
return self.language_model.generate( |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
**kwargs |
|
) |
|
|
|
def encode_images(self, images): |
|
kwargs = {} |
|
kwargs['vision_feature_layer'] = self.config.vision_feature_layer |
|
kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy |
|
images = images.to(device=self.device, dtype=self.dtype) |
|
image_features = self.vision_tower(images, **kwargs) |
|
image_features = self.connector(image_features) |
|
return image_features |
|
|
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, |
|
inputs_embeds=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
image_sizes = kwargs.pop("image_sizes", None) |
|
inputs = self.language_model.prepare_inputs_for_generation( |
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs |
|
) |
|
if images is not None: |
|
inputs['images'] = images |
|
if image_sizes is not None: |
|
inputs['image_sizes'] = image_sizes |
|
return inputs |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, |
|
images, image_sizes=None |
|
): |
|
vision_tower = self.vision_tower |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
|
|
image_features = self.encode_images(images) |
|
|
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
_input_ids = input_ids |
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|