jiajunlong
commited on
Commit
•
1c7edc5
1
Parent(s):
3a0a50a
Delete modeling_elm.py
Browse files- modeling_elm.py +0 -1288
modeling_elm.py
DELETED
@@ -1,1288 +0,0 @@
|
|
1 |
-
#
|
2 |
-
# For licensing see accompanying LICENSE file.
|
3 |
-
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
4 |
-
#
|
5 |
-
|
6 |
-
from typing import List, Optional, Tuple, Union
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.utils.checkpoint
|
10 |
-
from torch import Tensor, nn
|
11 |
-
from torch.nn import CrossEntropyLoss
|
12 |
-
from torch.nn import functional as F
|
13 |
-
from transformers import PreTrainedModel
|
14 |
-
from transformers.activations import ACT2FN
|
15 |
-
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
16 |
-
from transformers.modeling_outputs import (
|
17 |
-
BaseModelOutputWithPast,
|
18 |
-
CausalLMOutputWithPast,
|
19 |
-
)
|
20 |
-
from transformers.utils import logging
|
21 |
-
|
22 |
-
logger = logging.get_logger(__name__)
|
23 |
-
|
24 |
-
# this import has to be relative, otherwise, when setting trust_remote_code=True
|
25 |
-
# huggingface transformers won't be able to load the module correctly
|
26 |
-
from numbers import Number
|
27 |
-
from typing import List, Optional, Union
|
28 |
-
|
29 |
-
import numpy as np
|
30 |
-
from transformers import PretrainedConfig, AutoTokenizer
|
31 |
-
|
32 |
-
|
33 |
-
def make_divisible(
|
34 |
-
v: Union[float, int],
|
35 |
-
divisor: Optional[int] = 8,
|
36 |
-
min_value: Optional[Union[float, int]] = None,
|
37 |
-
) -> Union[float, int]:
|
38 |
-
"""
|
39 |
-
This function is taken from the original tf repo.
|
40 |
-
It ensures that all layers have a channel number that is divisible by the divisor
|
41 |
-
It can be seen at:
|
42 |
-
https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
|
43 |
-
Args:
|
44 |
-
v: input value
|
45 |
-
divisor: default to 8
|
46 |
-
min_value: minimum divisor value
|
47 |
-
Returns:
|
48 |
-
new_v: new divisible value
|
49 |
-
"""
|
50 |
-
if min_value is None:
|
51 |
-
min_value = divisor
|
52 |
-
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
53 |
-
# Make sure that round down does not go down by more than 10%.
|
54 |
-
if new_v < 0.9 * v:
|
55 |
-
new_v += divisor
|
56 |
-
return new_v
|
57 |
-
|
58 |
-
|
59 |
-
def compute_heads(model_dim: int, head_dim: int) -> int:
|
60 |
-
"""Compute the number of heads.
|
61 |
-
Args:
|
62 |
-
model_dim: Model dimension.
|
63 |
-
head_dim: Head dimension.
|
64 |
-
Returns:
|
65 |
-
An integer denoting number of heads in multi-head attention is returned.
|
66 |
-
Raises:
|
67 |
-
ValueError: if model dimension is not divisible by head dimension.
|
68 |
-
"""
|
69 |
-
if model_dim % head_dim == 0:
|
70 |
-
return model_dim // head_dim
|
71 |
-
else:
|
72 |
-
raise ValueError(
|
73 |
-
f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}."
|
74 |
-
)
|
75 |
-
|
76 |
-
|
77 |
-
OpenELM_CONFIGS = {
|
78 |
-
"OpenELM-270M": dict(
|
79 |
-
num_transformer_layers=16,
|
80 |
-
model_dim=1280,
|
81 |
-
head_dim=64,
|
82 |
-
num_gqa_groups=4,
|
83 |
-
normalize_qk_projections=True,
|
84 |
-
share_input_output_layers=True,
|
85 |
-
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
|
86 |
-
ffn_multipliers=(0.5, 4.0),
|
87 |
-
qkv_multipliers=(0.5, 1.0),
|
88 |
-
),
|
89 |
-
"OpenELM-450M": dict(
|
90 |
-
num_transformer_layers=20,
|
91 |
-
model_dim=1536,
|
92 |
-
head_dim=64,
|
93 |
-
num_gqa_groups=4,
|
94 |
-
normalize_qk_projections=True,
|
95 |
-
share_input_output_layers=True,
|
96 |
-
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
|
97 |
-
ffn_multipliers=(0.5, 4.0),
|
98 |
-
qkv_multipliers=(0.5, 1.0),
|
99 |
-
),
|
100 |
-
"OpenELM-1_1B": dict(
|
101 |
-
num_transformer_layers=28,
|
102 |
-
model_dim=2048,
|
103 |
-
head_dim=64,
|
104 |
-
num_gqa_groups=4,
|
105 |
-
normalize_qk_projections=True,
|
106 |
-
share_input_output_layers=True,
|
107 |
-
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
|
108 |
-
ffn_multipliers=(0.5, 4.0),
|
109 |
-
qkv_multipliers=(0.5, 1.0),
|
110 |
-
),
|
111 |
-
"OpenELM-3B": dict(
|
112 |
-
num_transformer_layers=36,
|
113 |
-
model_dim=3072,
|
114 |
-
head_dim=128,
|
115 |
-
num_gqa_groups=4,
|
116 |
-
normalize_qk_projections=True,
|
117 |
-
share_input_output_layers=True,
|
118 |
-
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
|
119 |
-
ffn_multipliers=(0.5, 4.0),
|
120 |
-
qkv_multipliers=(0.5, 1.0),
|
121 |
-
),
|
122 |
-
}
|
123 |
-
|
124 |
-
|
125 |
-
class OpenELMConfig(PretrainedConfig):
|
126 |
-
r"""
|
127 |
-
This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.
|
128 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
129 |
-
documentation from [`PretrainedConfig`] for more information.
|
130 |
-
Args:
|
131 |
-
vocab_size (`int`, *optional*, defaults to 32000):
|
132 |
-
Vocabulary size of the OpenELM model.
|
133 |
-
max_context_length (`int`, *optional*, defaults to 2048):
|
134 |
-
Maximum number of input tokens.
|
135 |
-
num_transformer_layers (`int`, *optional*, defaults to 12):
|
136 |
-
Number of hidden layers in the Transformer decoder.
|
137 |
-
model_dim (`int`, *optional*, defaults to 2048):
|
138 |
-
Dimension of the hidden representations.
|
139 |
-
head_dim (`int`, *optional*, defaults to 128):
|
140 |
-
The attention head dimension.
|
141 |
-
qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0):
|
142 |
-
If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions,
|
143 |
-
resulting in uniform allocation of parameters.
|
144 |
-
If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions
|
145 |
-
assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer.
|
146 |
-
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
|
147 |
-
num_query_heads (`Union[int, None]`, *optional*, defaults to None):
|
148 |
-
The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`.
|
149 |
-
num_gqa_groups (`int`, *optional*, defaults to 1):
|
150 |
-
This variable allows to switch between multi-head attention, group query attention, and multi-query attention.
|
151 |
-
When num_gqa_groups == 1, then it is multi-head attention.
|
152 |
-
When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention
|
153 |
-
When num_gqa_groups == num_heads, then it is multi-query attention
|
154 |
-
ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0):
|
155 |
-
Feed-forward network (FFN) multipliers.
|
156 |
-
If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions,
|
157 |
-
resulting in uniform allocation of parameters.
|
158 |
-
If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions
|
159 |
-
assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer.
|
160 |
-
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
|
161 |
-
ffn_with_glu (`bool`, *optional*, defaults to True):
|
162 |
-
Whether to use FFN with Gated Linear Unit (GLU)
|
163 |
-
ffn_dim_divisor (`int`, *optional*, defaults to 256):
|
164 |
-
The ffn layer dimension divisor.
|
165 |
-
activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`):
|
166 |
-
The non-linear activation function (function or string) in the decoder.
|
167 |
-
normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`):
|
168 |
-
Type of normalization layer.
|
169 |
-
normalize_qk_projections (`bool`, *optional*, defaults to False):
|
170 |
-
Whether to normalize queries and keys after projections
|
171 |
-
share_input_output_layers (`bool`, *optional*, defaults to False):
|
172 |
-
Whether to share the embedding between input and output linear layer
|
173 |
-
rope_freq_constant (`int`, *optional*, defaults to 10000):
|
174 |
-
The base period of the RoPE embeddings.
|
175 |
-
rope_max_length (`int`, *optional*, defaults to 4096):
|
176 |
-
That rope_max_length is set to twice of max_context_length.
|
177 |
-
This allows flexibility in token lengths during training or fine-tuning.
|
178 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
179 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
180 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
181 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
182 |
-
relevant if `config.is_decoder=True`.
|
183 |
-
bos_token_id (`int`, *optional*, defaults to 2):
|
184 |
-
Beginning of stream token id.
|
185 |
-
eos_token_id (`int`, *optional*, defaults to 1):
|
186 |
-
End of stream token id.
|
187 |
-
"""
|
188 |
-
|
189 |
-
model_type = "openelm"
|
190 |
-
|
191 |
-
def __init__(
|
192 |
-
self,
|
193 |
-
vocab_size: int = 32000,
|
194 |
-
max_context_length: int = 2048,
|
195 |
-
num_transformer_layers: int = 12,
|
196 |
-
model_dim: int = 2048,
|
197 |
-
head_dim: int = 128,
|
198 |
-
qkv_multipliers: Union[Number, List[Number]] = 1.0,
|
199 |
-
num_query_heads: Union[int, None] = None,
|
200 |
-
num_gqa_groups: int = 1,
|
201 |
-
ffn_multipliers: Union[Number, List[Number]] = 4.0,
|
202 |
-
ffn_with_glu: bool = True,
|
203 |
-
ffn_dim_divisor: int = 256,
|
204 |
-
activation_fn_name: str = "swish",
|
205 |
-
normalization_layer_name: str = "rms_norm",
|
206 |
-
normalize_qk_projections: bool = False,
|
207 |
-
share_input_output_layers: bool = False,
|
208 |
-
rope_freq_constant: int = 10000,
|
209 |
-
rope_max_length: int = 4096,
|
210 |
-
initializer_range: float = 0.02,
|
211 |
-
use_cache: bool = True,
|
212 |
-
bos_token_id: int = 1,
|
213 |
-
eos_token_id: int = 2,
|
214 |
-
**kwargs,
|
215 |
-
) -> None:
|
216 |
-
self.vocab_size = vocab_size
|
217 |
-
self.max_context_length = max_context_length
|
218 |
-
self.num_transformer_layers = num_transformer_layers
|
219 |
-
self.model_dim = model_dim
|
220 |
-
self.head_dim = head_dim
|
221 |
-
self.qkv_multipliers = qkv_multipliers
|
222 |
-
self.num_query_heads = num_query_heads
|
223 |
-
self.num_gqa_groups = num_gqa_groups
|
224 |
-
self.ffn_multipliers = ffn_multipliers
|
225 |
-
self.ffn_with_glu = ffn_with_glu
|
226 |
-
self.ffn_dim_divisor = ffn_dim_divisor
|
227 |
-
self.activation_fn_name = activation_fn_name
|
228 |
-
self.normalization_layer_name = normalization_layer_name
|
229 |
-
self.normalize_qk_projections = normalize_qk_projections
|
230 |
-
self.share_input_output_layers = share_input_output_layers
|
231 |
-
self.rope_freq_constant = rope_freq_constant
|
232 |
-
self.rope_max_length = rope_max_length
|
233 |
-
self.num_query_heads = (
|
234 |
-
compute_heads(model_dim=model_dim, head_dim=head_dim)
|
235 |
-
if num_query_heads is None
|
236 |
-
else num_query_heads
|
237 |
-
)
|
238 |
-
self.initializer_range = initializer_range
|
239 |
-
|
240 |
-
self.__post_init__()
|
241 |
-
super().__init__(
|
242 |
-
use_cache=use_cache,
|
243 |
-
bos_token_id=bos_token_id,
|
244 |
-
eos_token_id=eos_token_id,
|
245 |
-
**kwargs,
|
246 |
-
)
|
247 |
-
|
248 |
-
def __post_init__(self) -> None:
|
249 |
-
if self.num_gqa_groups is not None:
|
250 |
-
head_multiple_of = self.num_gqa_groups
|
251 |
-
else:
|
252 |
-
head_multiple_of = 2
|
253 |
-
|
254 |
-
if isinstance(self.qkv_multipliers, Number):
|
255 |
-
# All attention layers have the same latent dimensions, resulting in uniform allocation of parameters.
|
256 |
-
qkv_dim = make_divisible(
|
257 |
-
self.model_dim * self.qkv_multipliers,
|
258 |
-
divisor=self.head_dim * head_multiple_of,
|
259 |
-
)
|
260 |
-
query_dims = [int(qkv_dim)] * self.num_transformer_layers
|
261 |
-
|
262 |
-
elif (
|
263 |
-
isinstance(self.qkv_multipliers, (tuple, list))
|
264 |
-
and len(self.qkv_multipliers) == 2
|
265 |
-
):
|
266 |
-
# Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1].
|
267 |
-
# This results in variable allocation of parameters in attention layer.
|
268 |
-
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
|
269 |
-
qkv_multipliers = [
|
270 |
-
round(v, 2)
|
271 |
-
for v in np.linspace(
|
272 |
-
self.qkv_multipliers[0],
|
273 |
-
self.qkv_multipliers[1],
|
274 |
-
num=self.num_transformer_layers,
|
275 |
-
dtype=float,
|
276 |
-
)
|
277 |
-
]
|
278 |
-
# Make sure that scaled model dimension is divisible by scaled head dimension.
|
279 |
-
query_dims = [
|
280 |
-
int(
|
281 |
-
make_divisible(
|
282 |
-
self.model_dim * m, divisor=self.head_dim * head_multiple_of
|
283 |
-
)
|
284 |
-
)
|
285 |
-
for m in qkv_multipliers
|
286 |
-
]
|
287 |
-
else:
|
288 |
-
raise NotImplementedError(
|
289 |
-
f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
|
290 |
-
)
|
291 |
-
|
292 |
-
# compute the number of query, key, and value heads
|
293 |
-
# For multi-head and multi-query attention, the number of heads for query, key, and value are the same.
|
294 |
-
# For group query attention, the number of key and value heads are the same.
|
295 |
-
self.num_query_heads = [
|
296 |
-
int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims
|
297 |
-
]
|
298 |
-
self.num_kv_heads = [
|
299 |
-
q_heads // self.num_gqa_groups for q_heads in self.num_query_heads
|
300 |
-
]
|
301 |
-
|
302 |
-
# Feed-forward network (FFN) multipliers
|
303 |
-
if isinstance(self.ffn_multipliers, Number):
|
304 |
-
# All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters.
|
305 |
-
self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers
|
306 |
-
elif isinstance(self.ffn_multipliers, (tuple, list)):
|
307 |
-
# Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1].
|
308 |
-
# This results in variable allocation of parameters in FFN layer.
|
309 |
-
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
|
310 |
-
if len(self.ffn_multipliers) == 2:
|
311 |
-
self.ffn_multipliers = [
|
312 |
-
round(v, 2)
|
313 |
-
for v in np.linspace(
|
314 |
-
self.ffn_multipliers[0],
|
315 |
-
self.ffn_multipliers[1],
|
316 |
-
num=self.num_transformer_layers,
|
317 |
-
dtype=float,
|
318 |
-
)
|
319 |
-
]
|
320 |
-
else:
|
321 |
-
assert (
|
322 |
-
len(self.ffn_multipliers) == self.num_transformer_layers
|
323 |
-
), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}"
|
324 |
-
else:
|
325 |
-
raise NotImplementedError(
|
326 |
-
f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
|
327 |
-
)
|
328 |
-
|
329 |
-
# check num_query_heads divisible by num_kv_heads for every layer
|
330 |
-
for layer_idx in range(len(query_dims)):
|
331 |
-
assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0
|
332 |
-
|
333 |
-
class OpenELMRMSNorm(nn.Module):
|
334 |
-
def __init__(self, num_features: int, eps: float = 1e-6):
|
335 |
-
"""
|
336 |
-
Initialize the OpenELMRMSNorm normalization layer.
|
337 |
-
Args:
|
338 |
-
dim (int): The dimension of the input tensor.
|
339 |
-
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
340 |
-
Attributes:
|
341 |
-
eps (float): A small value added to the denominator for numerical stability.
|
342 |
-
weight (nn.Parameter): Learnable scaling parameter.
|
343 |
-
"""
|
344 |
-
super().__init__()
|
345 |
-
self.eps = eps
|
346 |
-
self.weight = nn.Parameter(torch.ones(num_features))
|
347 |
-
self.num_features = num_features
|
348 |
-
|
349 |
-
def _norm(self, x: Tensor) -> Tensor:
|
350 |
-
"""
|
351 |
-
Apply the OpenELMRMSNorm normalization to the input tensor.
|
352 |
-
Args:
|
353 |
-
x (torch.Tensor): The input tensor.
|
354 |
-
Returns:
|
355 |
-
torch.Tensor: The normalized tensor.
|
356 |
-
"""
|
357 |
-
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
358 |
-
|
359 |
-
def forward(self, x: Tensor) -> Tensor:
|
360 |
-
"""
|
361 |
-
Forward pass through the OpenELMRMSNorm layer.
|
362 |
-
Args:
|
363 |
-
x (torch.Tensor): The input tensor.
|
364 |
-
Returns:
|
365 |
-
torch.Tensor: The output tensor after applying OpenELMRMSNorm.
|
366 |
-
"""
|
367 |
-
output = self._norm(x.float()).type_as(x)
|
368 |
-
return output * self.weight
|
369 |
-
|
370 |
-
def extra_repr(self) -> str:
|
371 |
-
return (
|
372 |
-
super().extra_repr() + f"num_features={self.num_features}, eps={self.eps}"
|
373 |
-
)
|
374 |
-
|
375 |
-
|
376 |
-
class OpenELMPreTrainedModel(PreTrainedModel):
|
377 |
-
config_class = OpenELMConfig
|
378 |
-
base_model_prefix = "transformer"
|
379 |
-
supports_gradient_checkpointing = True
|
380 |
-
_no_split_modules = ["OpenELMDecoderLayer"]
|
381 |
-
_skip_keys_device_placement = "past_key_values"
|
382 |
-
|
383 |
-
def __init__(self, *inputs, **kwargs) -> None:
|
384 |
-
super().__init__(*inputs, **kwargs)
|
385 |
-
|
386 |
-
def _init_weights(self, module: nn.Module) -> None:
|
387 |
-
"""Initialize the weights."""
|
388 |
-
if isinstance(module, nn.Linear):
|
389 |
-
# Slightly different from the TF version which uses truncated_normal for initialization
|
390 |
-
# cf https://github.com/pytorch/pytorch/pull/5617
|
391 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
392 |
-
if module.bias is not None:
|
393 |
-
module.bias.data.zero_()
|
394 |
-
elif isinstance(module, nn.Embedding):
|
395 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
396 |
-
if module.padding_idx is not None:
|
397 |
-
module.weight.data[module.padding_idx].zero_()
|
398 |
-
elif isinstance(module, OpenELMRMSNorm):
|
399 |
-
module.weight.data.fill_(1.0)
|
400 |
-
|
401 |
-
|
402 |
-
def _rotate_half(x: Tensor) -> Tensor:
|
403 |
-
x1, x2 = x.chunk(2, dim=-1)
|
404 |
-
return torch.cat((-x2, x1), dim=-1)
|
405 |
-
|
406 |
-
|
407 |
-
def _apply_rotary_pos_emb(x: Tensor, pos_sin: Tensor, pos_cos: Tensor) -> Tensor:
|
408 |
-
return (x * pos_cos) + (_rotate_half(x) * pos_sin)
|
409 |
-
|
410 |
-
|
411 |
-
class OpenELMRotaryEmbedding(torch.nn.Module):
|
412 |
-
"""
|
413 |
-
The rotary position embeddings (aka RoPE) from `RoFormer <https://arxiv.org/abs/2104.09864>`_.
|
414 |
-
RoPE encodes the position information of tokens using a rotation matrix, and is able to capture
|
415 |
-
explicit relative positional dependencies.
|
416 |
-
Args:
|
417 |
-
model_dim: The dimensionality of the model's hidden state.
|
418 |
-
max_seq_length: Maximum sequence length.
|
419 |
-
freq_constant: A constant used for computing frequencies.
|
420 |
-
"""
|
421 |
-
|
422 |
-
def __init__(
|
423 |
-
self, model_dim: int, max_seq_length: int, freq_constant: int = 10000
|
424 |
-
) -> None:
|
425 |
-
inv_freq = 1.0 / (
|
426 |
-
freq_constant
|
427 |
-
** (torch.arange(0, model_dim, 2, dtype=torch.float32) / model_dim)
|
428 |
-
)
|
429 |
-
super().__init__()
|
430 |
-
|
431 |
-
self.model_dim = model_dim
|
432 |
-
self.freq_constant = freq_constant
|
433 |
-
self.max_seq_length = max_seq_length
|
434 |
-
|
435 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
436 |
-
self._cached_cos = None
|
437 |
-
self._cached_sin = None
|
438 |
-
self._cached_seq_length = max_seq_length
|
439 |
-
self._compute_sin_cos_embeddings(max_seq_length)
|
440 |
-
|
441 |
-
def extra_repr(self) -> str:
|
442 |
-
return f"\tmodel_dim={self.model_dim}, max_seq_length={self.max_seq_length}, freq_constant={self.freq_constant}"
|
443 |
-
|
444 |
-
def _compute_sin_cos_embeddings(
|
445 |
-
self,
|
446 |
-
key_len: int,
|
447 |
-
key_device: torch.device = torch.device("cpu"),
|
448 |
-
key_dtype: torch.dtype = torch.float32,
|
449 |
-
) -> None:
|
450 |
-
"""
|
451 |
-
Compute sine and cos embeddings.
|
452 |
-
Args:
|
453 |
-
key_len: Number of tokens in the key embeddings in the transformer model.
|
454 |
-
device: Device where the key embeddings are stored.
|
455 |
-
key_dtype: Data type of the key embeddings.
|
456 |
-
Returns:
|
457 |
-
None
|
458 |
-
...note:
|
459 |
-
We recalculate the sine and cosine embeddings if any of the following conditions are met:
|
460 |
-
1. The number of tokens in key embeddings are greater than the cached sequence length.
|
461 |
-
2. Sine and cosine caches are empty.
|
462 |
-
3. The device and data type of sine and cosine embeddings does not match with the key embeddings.
|
463 |
-
"""
|
464 |
-
if (
|
465 |
-
key_len > self._cached_seq_length
|
466 |
-
or self._cached_cos is None
|
467 |
-
or (self._cached_cos is not None and self._cached_cos.device != key_device)
|
468 |
-
or (self._cached_cos is not None and self._cached_cos.dtype != key_dtype)
|
469 |
-
or self._cached_sin is None
|
470 |
-
or (self._cached_sin is not None and self._cached_sin.device != key_device)
|
471 |
-
or (self._cached_sin is not None and self._cached_sin.dtype != key_dtype)
|
472 |
-
):
|
473 |
-
self._cached_seq_length = max(key_len, self._cached_seq_length)
|
474 |
-
|
475 |
-
# The shape of 'pos_index' is [number of key tokens]
|
476 |
-
pos_index = torch.arange(
|
477 |
-
self._cached_seq_length,
|
478 |
-
dtype=torch.float32,
|
479 |
-
device=self.inv_freq.device,
|
480 |
-
)
|
481 |
-
# The shape of 'pos_index_theta' is [number of key tokens, model dimension]
|
482 |
-
pos_index_theta = torch.einsum("i,j->ij", pos_index, self.inv_freq)
|
483 |
-
# The shape of 'emb' is [number of key tokens, model dimension]
|
484 |
-
emb = torch.cat((pos_index_theta, pos_index_theta), dim=-1)
|
485 |
-
|
486 |
-
# the shape of cos and sin embeddings is [number of key tokens, model_dim]
|
487 |
-
cos_emb = emb.cos().to(dtype=key_dtype, device=key_device)
|
488 |
-
sin_emb = emb.sin().to(dtype=key_dtype, device=key_device)
|
489 |
-
|
490 |
-
# the shape of cached cos and sin embeddings is [1, 1, number of key tokens, model_dim]
|
491 |
-
self._cached_cos = cos_emb[None, None, :, :]
|
492 |
-
self._cached_sin = sin_emb[None, None, :, :]
|
493 |
-
|
494 |
-
def forward(
|
495 |
-
self,
|
496 |
-
query: torch.Tensor,
|
497 |
-
key: torch.Tensor,
|
498 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
499 |
-
"""
|
500 |
-
The forward function of RoPE embeddings.
|
501 |
-
Args:
|
502 |
-
query: Query embeddings in the transformer model. The shape of query embeddings is
|
503 |
-
[Batch, number of query heads, number of query tokens, model dimension].
|
504 |
-
key: Key embeddings in the transformer model. The shape of key embeddings is
|
505 |
-
[Batch, number of key heads, number of key tokens, model dimension].
|
506 |
-
Returns:
|
507 |
-
A tuple containing the query and key embeddings with positional information. The shape of the returned query
|
508 |
-
and key embeddings is the same as the input query and key embeddings respectively.
|
509 |
-
...note:
|
510 |
-
The RoPE embedding computation is done in full-precision. After the computation, input query and key tensors
|
511 |
-
are casted to original input datatype.
|
512 |
-
"""
|
513 |
-
dim = key.shape[-1]
|
514 |
-
key_len = key.shape[2]
|
515 |
-
query_len = query.shape[2]
|
516 |
-
|
517 |
-
assert dim == self.model_dim
|
518 |
-
assert key.device == query.device
|
519 |
-
assert key.dtype == query.dtype
|
520 |
-
|
521 |
-
# In the context of self-attention, the lengths of keys and queries are equal.
|
522 |
-
# However, in generation tasks, such as predicting the next token in a sequence, the lengths of keys and queries
|
523 |
-
# can differ. For instance, when employing key-value (KV) caching for sequence prediction, the keys
|
524 |
-
# represent embeddings of previous tokens and the current token, while the query corresponds
|
525 |
-
# to the embedding of the current token only.
|
526 |
-
assert (
|
527 |
-
key_len >= query_len
|
528 |
-
), "Number of keys has to be greater than or equal to number of queries."
|
529 |
-
|
530 |
-
query_float = query.float()
|
531 |
-
key_float = key.float()
|
532 |
-
|
533 |
-
self._compute_sin_cos_embeddings(
|
534 |
-
key_len, key_device=key_float.device, key_dtype=key_float.dtype
|
535 |
-
)
|
536 |
-
query_float = _apply_rotary_pos_emb(
|
537 |
-
x=query_float,
|
538 |
-
pos_sin=self._cached_sin[..., key_len - query_len : key_len, :],
|
539 |
-
pos_cos=self._cached_cos[..., key_len - query_len : key_len, :],
|
540 |
-
)
|
541 |
-
key_float = _apply_rotary_pos_emb(
|
542 |
-
x=key_float,
|
543 |
-
pos_sin=self._cached_sin[..., :key_len, :],
|
544 |
-
pos_cos=self._cached_cos[..., :key_len, :],
|
545 |
-
)
|
546 |
-
|
547 |
-
return query_float.type_as(query), key_float.type_as(key)
|
548 |
-
|
549 |
-
|
550 |
-
class OpenELMMultiHeadCausalAttention(nn.Module):
|
551 |
-
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
|
552 |
-
super().__init__()
|
553 |
-
self.layer_idx = layer_idx
|
554 |
-
head_dim = config.head_dim
|
555 |
-
q_heads = config.num_query_heads[layer_idx]
|
556 |
-
k_heads = config.num_kv_heads[layer_idx]
|
557 |
-
v_heads = config.num_kv_heads[layer_idx]
|
558 |
-
|
559 |
-
self.qkv_proj = nn.Linear(
|
560 |
-
in_features=config.model_dim,
|
561 |
-
out_features=(q_heads + k_heads + v_heads) * head_dim,
|
562 |
-
bias=False,
|
563 |
-
)
|
564 |
-
|
565 |
-
self.pos_embedding = OpenELMRotaryEmbedding(
|
566 |
-
model_dim=config.head_dim,
|
567 |
-
max_seq_length=config.rope_max_length,
|
568 |
-
freq_constant=config.rope_freq_constant,
|
569 |
-
)
|
570 |
-
|
571 |
-
if config.normalize_qk_projections:
|
572 |
-
self.q_norm = OpenELMRMSNorm(
|
573 |
-
num_features=config.head_dim,
|
574 |
-
)
|
575 |
-
self.k_norm = OpenELMRMSNorm(
|
576 |
-
num_features=config.head_dim,
|
577 |
-
)
|
578 |
-
else:
|
579 |
-
self.q_norm = None
|
580 |
-
self.k_norm = None
|
581 |
-
|
582 |
-
self.out_proj = nn.Linear(
|
583 |
-
in_features=q_heads * head_dim,
|
584 |
-
out_features=config.model_dim,
|
585 |
-
bias=False,
|
586 |
-
)
|
587 |
-
|
588 |
-
self.head_dim = config.head_dim
|
589 |
-
self.num_q_heads = q_heads
|
590 |
-
self.num_k_heads = k_heads
|
591 |
-
self.num_v_heads = v_heads
|
592 |
-
self.transformer_dim = config.model_dim
|
593 |
-
self.num_groups = self.num_q_heads // self.num_k_heads
|
594 |
-
|
595 |
-
def extra_repr(self) -> str:
|
596 |
-
return (
|
597 |
-
super().extra_repr()
|
598 |
-
+ f"query_heads={self.num_q_heads}, key_heads={self.num_k_heads}, value_heads={self.num_v_heads}"
|
599 |
-
)
|
600 |
-
|
601 |
-
def forward(
|
602 |
-
self,
|
603 |
-
hidden_states: torch.Tensor,
|
604 |
-
attention_mask: Optional[torch.Tensor] = None,
|
605 |
-
past_key_value: Optional[Cache] = None,
|
606 |
-
output_attentions: bool = False,
|
607 |
-
use_cache: bool = False,
|
608 |
-
cache_position: Optional[torch.LongTensor] = None,
|
609 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
610 |
-
"""
|
611 |
-
Forward pass of multi-head self-attention.
|
612 |
-
Args:
|
613 |
-
hidden_states: Input tensor of the shape [batch size, sequence length, model dimension].
|
614 |
-
past_key_value: Tensor storing the cached keys and values.
|
615 |
-
output_attentions: output attention weights.
|
616 |
-
use_cache: Specifies whether to use kv-cache for generation.
|
617 |
-
cache_position: used for updating the kv-cache.
|
618 |
-
Returns:
|
619 |
-
The output of the same shape as the input, optionally with a tensor containing cached keys and values.
|
620 |
-
"""
|
621 |
-
|
622 |
-
# scaled_dot_product_attention does not return attention weights, set output_attentions to False
|
623 |
-
output_attentions = False
|
624 |
-
batch_size, seq_length, d_model = hidden_states.size()
|
625 |
-
|
626 |
-
# [B, S, d] --> [B, S, (q_h + k_h + v_h) * h]
|
627 |
-
qkv = self.qkv_proj(hidden_states)
|
628 |
-
# [B, S, (q_h + k_h + v_h) * h] --> [B, S, (q_h + k_h + v_h), h]
|
629 |
-
qkv = qkv.reshape(
|
630 |
-
batch_size,
|
631 |
-
seq_length,
|
632 |
-
self.num_q_heads + self.num_k_heads + self.num_v_heads,
|
633 |
-
self.head_dim,
|
634 |
-
)
|
635 |
-
# [B, S, (q_h + k_h + v_h), h] --> [B, (q_h + k_h + v_h), S, h]
|
636 |
-
qkv = qkv.transpose(1, 2)
|
637 |
-
# [B, (q_h + k_h + v_h), S, h] --> [B, q_h, S h], [B, k_h, S, h], [B, v_h, S, h]
|
638 |
-
queries, keys, values = qkv.split(
|
639 |
-
[self.num_q_heads, self.num_k_heads, self.num_v_heads], dim=1
|
640 |
-
)
|
641 |
-
|
642 |
-
if self.q_norm is not None:
|
643 |
-
queries = self.q_norm(queries)
|
644 |
-
|
645 |
-
if self.k_norm is not None:
|
646 |
-
keys = self.k_norm(keys)
|
647 |
-
|
648 |
-
past_key_value = getattr(self, "past_key_value", past_key_value)
|
649 |
-
|
650 |
-
if past_key_value is not None:
|
651 |
-
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
652 |
-
# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
653 |
-
cache_kwargs = {"cache_position": cache_position}
|
654 |
-
keys, values = past_key_value.update(
|
655 |
-
keys, values, self.layer_idx, cache_kwargs
|
656 |
-
)
|
657 |
-
|
658 |
-
# Add positional embedding
|
659 |
-
queries, keys = self.pos_embedding(queries, keys)
|
660 |
-
|
661 |
-
if self.num_groups != 1:
|
662 |
-
# GQA
|
663 |
-
# [B, k_h, S, h] --> [B, q_h, S, h]
|
664 |
-
keys = keys.repeat_interleave(self.num_groups, dim=1)
|
665 |
-
# [B, v_h, S, h] --> [B, q_h, S, h]
|
666 |
-
values = values.repeat_interleave(self.num_groups, dim=1)
|
667 |
-
|
668 |
-
causal_mask = attention_mask
|
669 |
-
if attention_mask is not None and cache_position is not None:
|
670 |
-
causal_mask = causal_mask[:, :, cache_position, : keys.shape[-2]]
|
671 |
-
|
672 |
-
attn_output = F.scaled_dot_product_attention(
|
673 |
-
queries,
|
674 |
-
keys,
|
675 |
-
values,
|
676 |
-
attn_mask=causal_mask,
|
677 |
-
dropout_p=0,
|
678 |
-
)
|
679 |
-
|
680 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
681 |
-
attn_output = attn_output.reshape(
|
682 |
-
batch_size, seq_length, self.num_q_heads * self.head_dim
|
683 |
-
)
|
684 |
-
attn_output = self.out_proj(attn_output)
|
685 |
-
if not output_attentions:
|
686 |
-
attn_weights = None
|
687 |
-
return attn_output, attn_weights, past_key_value
|
688 |
-
|
689 |
-
|
690 |
-
class OpenELMFeedForwardNetwork(nn.Module):
|
691 |
-
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
|
692 |
-
super().__init__()
|
693 |
-
ffn_multiplier = config.ffn_multipliers[layer_idx]
|
694 |
-
intermediate_dim = int(
|
695 |
-
make_divisible(
|
696 |
-
ffn_multiplier * config.model_dim,
|
697 |
-
divisor=config.ffn_dim_divisor,
|
698 |
-
)
|
699 |
-
)
|
700 |
-
if config.ffn_with_glu:
|
701 |
-
# FFN with Gated linear unit, as described in https://arxiv.org/abs/2002.05202v1.
|
702 |
-
self.proj_1 = nn.Linear(
|
703 |
-
in_features=config.model_dim,
|
704 |
-
out_features=2 * intermediate_dim,
|
705 |
-
bias=False,
|
706 |
-
)
|
707 |
-
self.proj_2 = nn.Linear(
|
708 |
-
in_features=intermediate_dim,
|
709 |
-
out_features=config.model_dim,
|
710 |
-
bias=False,
|
711 |
-
)
|
712 |
-
self.ffn_with_glu = True
|
713 |
-
else:
|
714 |
-
# Standard FFN, as described in https://arxiv.org/abs/1706.03762
|
715 |
-
self.proj_1 = nn.Linear(
|
716 |
-
in_features=config.model_dim,
|
717 |
-
out_features=intermediate_dim,
|
718 |
-
bias=False,
|
719 |
-
)
|
720 |
-
self.proj_2 = nn.Linear(
|
721 |
-
in_features=intermediate_dim,
|
722 |
-
out_features=config.model_dim,
|
723 |
-
bias=False,
|
724 |
-
)
|
725 |
-
self.ffn_with_glu = False
|
726 |
-
|
727 |
-
self.act = ACT2FN[config.activation_fn_name]
|
728 |
-
|
729 |
-
def extra_repr(self) -> str:
|
730 |
-
return super().extra_repr() + f"(ffn_with_glu) : {self.ffn_with_glu}"
|
731 |
-
|
732 |
-
def forward(self, x: Tensor) -> Tensor:
|
733 |
-
"""Forward function of FFN layer.
|
734 |
-
Args:
|
735 |
-
x: Input tensor of the shape [batch size, sequence length, model dimension].
|
736 |
-
Returns:
|
737 |
-
A tensor of the same shape as the input.
|
738 |
-
"""
|
739 |
-
if self.ffn_with_glu:
|
740 |
-
y_12 = self.proj_1(x)
|
741 |
-
y_1, y_2 = y_12.chunk(2, dim=-1)
|
742 |
-
y = self.act(y_1) * y_2
|
743 |
-
return self.proj_2(y)
|
744 |
-
else:
|
745 |
-
return self.proj_2(self.act(self.proj_1(x)))
|
746 |
-
|
747 |
-
|
748 |
-
class OpenELMDecoderLayer(nn.Module):
|
749 |
-
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
|
750 |
-
super().__init__()
|
751 |
-
self.attn = OpenELMMultiHeadCausalAttention(config=config, layer_idx=layer_idx)
|
752 |
-
self.ffn = OpenELMFeedForwardNetwork(config=config, layer_idx=layer_idx)
|
753 |
-
self.ffn_norm = OpenELMRMSNorm(
|
754 |
-
num_features=config.model_dim,
|
755 |
-
)
|
756 |
-
self.attn_norm = OpenELMRMSNorm(
|
757 |
-
num_features=config.model_dim,
|
758 |
-
)
|
759 |
-
|
760 |
-
def forward(
|
761 |
-
self,
|
762 |
-
hidden_states: torch.Tensor,
|
763 |
-
attention_mask: Optional[torch.Tensor] = None,
|
764 |
-
position_ids: Optional[torch.LongTensor] = None,
|
765 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
766 |
-
output_attentions: Optional[bool] = False,
|
767 |
-
use_cache: Optional[bool] = False,
|
768 |
-
cache_position: Optional[torch.LongTensor] = None,
|
769 |
-
**kwargs,
|
770 |
-
) -> Tuple[
|
771 |
-
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
772 |
-
]:
|
773 |
-
"""
|
774 |
-
Args:
|
775 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
776 |
-
attention_mask (`torch.FloatTensor`, *optional*):
|
777 |
-
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
778 |
-
query_sequence_length, key_sequence_length)` if default attention is used.
|
779 |
-
output_attentions (`bool`, *optional*):
|
780 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
781 |
-
returned tensors for more detail.
|
782 |
-
use_cache (`bool`, *optional*):
|
783 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
784 |
-
(see `past_key_values`).
|
785 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
786 |
-
"""
|
787 |
-
residual = hidden_states
|
788 |
-
hidden_states = self.attn_norm(hidden_states)
|
789 |
-
|
790 |
-
# Self Attention
|
791 |
-
hidden_states, self_attn_weights, present_key_value = self.attn(
|
792 |
-
hidden_states=hidden_states,
|
793 |
-
attention_mask=attention_mask,
|
794 |
-
past_key_value=past_key_value,
|
795 |
-
output_attentions=output_attentions,
|
796 |
-
use_cache=use_cache,
|
797 |
-
cache_position=cache_position,
|
798 |
-
**kwargs,
|
799 |
-
)
|
800 |
-
hidden_states = residual + hidden_states
|
801 |
-
|
802 |
-
# Fully Connected
|
803 |
-
residual = hidden_states
|
804 |
-
hidden_states = self.ffn_norm(hidden_states)
|
805 |
-
hidden_states = self.ffn(hidden_states)
|
806 |
-
hidden_states = residual + hidden_states
|
807 |
-
|
808 |
-
outputs = (hidden_states,)
|
809 |
-
|
810 |
-
if output_attentions:
|
811 |
-
outputs += (self_attn_weights,)
|
812 |
-
|
813 |
-
if use_cache:
|
814 |
-
outputs += (present_key_value,)
|
815 |
-
|
816 |
-
return outputs
|
817 |
-
|
818 |
-
|
819 |
-
class OpenELMModel(OpenELMPreTrainedModel):
|
820 |
-
config_class = OpenELMConfig
|
821 |
-
|
822 |
-
def __init__(self, config: OpenELMConfig):
|
823 |
-
super().__init__(config)
|
824 |
-
self.config = config
|
825 |
-
|
826 |
-
self.token_embeddings = nn.Embedding(
|
827 |
-
embedding_dim=config.model_dim,
|
828 |
-
num_embeddings=config.vocab_size,
|
829 |
-
)
|
830 |
-
|
831 |
-
self.layers = nn.ModuleList(
|
832 |
-
OpenELMDecoderLayer(config=config, layer_idx=layer_idx)
|
833 |
-
for layer_idx in range(config.num_transformer_layers)
|
834 |
-
)
|
835 |
-
self.norm = OpenELMRMSNorm(num_features=config.model_dim)
|
836 |
-
if config.share_input_output_layers:
|
837 |
-
self.classifier = None
|
838 |
-
else:
|
839 |
-
self.classifier = nn.Linear(
|
840 |
-
in_features=config.model_dim,
|
841 |
-
out_features=config.vocab_size,
|
842 |
-
bias=False,
|
843 |
-
)
|
844 |
-
self.num_transformer_layers = config.num_transformer_layers
|
845 |
-
self.gradient_checkpointing = False
|
846 |
-
|
847 |
-
# Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
|
848 |
-
# NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_context_length`.
|
849 |
-
causal_mask = torch.full(
|
850 |
-
(config.max_context_length, config.max_context_length),
|
851 |
-
fill_value=True,
|
852 |
-
dtype=torch.bool,
|
853 |
-
)
|
854 |
-
self.register_buffer(
|
855 |
-
"causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
|
856 |
-
)
|
857 |
-
|
858 |
-
# Initialize weights and apply final processing
|
859 |
-
self.post_init()
|
860 |
-
self.reset_parameters(config=config)
|
861 |
-
|
862 |
-
def get_input_embeddings(self):
|
863 |
-
return self.token_embeddings
|
864 |
-
|
865 |
-
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
866 |
-
self.token_embeddings = new_embeddings
|
867 |
-
|
868 |
-
def reset_parameters(self, config: OpenELMConfig) -> None:
|
869 |
-
"""Initialize the layers in Language Model
|
870 |
-
The initialization scheme is followed, following `OPT <https://arxiv.org/pdf/2205.01068.pdf>`_.
|
871 |
-
Args:
|
872 |
-
use_megatron_std: Use standard deviation as described in Megatron-LM.
|
873 |
-
Returns:
|
874 |
-
None
|
875 |
-
"""
|
876 |
-
for module in self.modules():
|
877 |
-
if isinstance(module, nn.Linear):
|
878 |
-
std = module.in_features**-0.5
|
879 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
880 |
-
if module.bias is not None:
|
881 |
-
torch.nn.init.zeros_(module.bias)
|
882 |
-
elif isinstance(module, nn.Embedding):
|
883 |
-
std = module.embedding_dim**-0.5
|
884 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
885 |
-
elif isinstance(module, OpenELMRMSNorm):
|
886 |
-
if module.weight is not None:
|
887 |
-
torch.nn.init.ones_(module.weight)
|
888 |
-
if hasattr(module, "bias") and module.bias is not None:
|
889 |
-
torch.nn.init.zeros_(module.bias)
|
890 |
-
|
891 |
-
model_dim = config.model_dim
|
892 |
-
n_layers = config.num_transformer_layers
|
893 |
-
std = (model_dim**-0.5) * ((2 * n_layers) ** -0.5)
|
894 |
-
for param_name, param in self.named_parameters():
|
895 |
-
if param_name.endswith("out_proj.weight") or param_name.endswith(
|
896 |
-
"ffn.proj_2.weight"
|
897 |
-
):
|
898 |
-
torch.nn.init.normal_(param, mean=0.0, std=std)
|
899 |
-
|
900 |
-
def forward(
|
901 |
-
self,
|
902 |
-
input_ids: torch.LongTensor = None,
|
903 |
-
attention_mask: Optional[torch.Tensor] = None,
|
904 |
-
position_ids: Optional[torch.LongTensor] = None,
|
905 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
906 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
907 |
-
use_cache: Optional[bool] = None,
|
908 |
-
output_attentions: Optional[bool] = None,
|
909 |
-
output_hidden_states: Optional[bool] = None,
|
910 |
-
return_dict: Optional[bool] = None,
|
911 |
-
cache_position: Optional[torch.LongTensor] = None,
|
912 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
913 |
-
output_attentions = (
|
914 |
-
output_attentions
|
915 |
-
if output_attentions is not None
|
916 |
-
else self.config.output_attentions
|
917 |
-
)
|
918 |
-
output_hidden_states = (
|
919 |
-
output_hidden_states
|
920 |
-
if output_hidden_states is not None
|
921 |
-
else self.config.output_hidden_states
|
922 |
-
)
|
923 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
924 |
-
return_dict = (
|
925 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
926 |
-
)
|
927 |
-
|
928 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
929 |
-
raise ValueError(
|
930 |
-
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
931 |
-
)
|
932 |
-
|
933 |
-
if self.gradient_checkpointing and self.training and use_cache:
|
934 |
-
logger.warning_once(
|
935 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
936 |
-
)
|
937 |
-
use_cache = False
|
938 |
-
|
939 |
-
if inputs_embeds is None:
|
940 |
-
inputs_embeds = self.token_embeddings(input_ids)
|
941 |
-
|
942 |
-
past_seen_tokens = 0
|
943 |
-
if use_cache: # kept for BC (cache positions)
|
944 |
-
if not isinstance(past_key_values, StaticCache):
|
945 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
946 |
-
past_seen_tokens = past_key_values.get_seq_length()
|
947 |
-
|
948 |
-
if cache_position is None:
|
949 |
-
cache_position = torch.arange(
|
950 |
-
past_seen_tokens,
|
951 |
-
past_seen_tokens + inputs_embeds.shape[1],
|
952 |
-
device=inputs_embeds.device,
|
953 |
-
)
|
954 |
-
|
955 |
-
if position_ids is None:
|
956 |
-
position_ids = cache_position.unsqueeze(0)
|
957 |
-
|
958 |
-
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
|
959 |
-
|
960 |
-
# embed positions
|
961 |
-
hidden_states = inputs_embeds
|
962 |
-
|
963 |
-
# decoder layers
|
964 |
-
all_hidden_states = () if output_hidden_states else None
|
965 |
-
all_self_attns = () if output_attentions else None
|
966 |
-
next_decoder_cache = None
|
967 |
-
|
968 |
-
for decoder_layer in self.layers:
|
969 |
-
if output_hidden_states:
|
970 |
-
all_hidden_states += (hidden_states,)
|
971 |
-
|
972 |
-
if self.gradient_checkpointing and self.training:
|
973 |
-
layer_outputs = self._gradient_checkpointing_func(
|
974 |
-
decoder_layer.__call__,
|
975 |
-
hidden_states,
|
976 |
-
causal_mask,
|
977 |
-
position_ids,
|
978 |
-
past_key_values,
|
979 |
-
output_attentions,
|
980 |
-
use_cache,
|
981 |
-
cache_position,
|
982 |
-
)
|
983 |
-
else:
|
984 |
-
layer_outputs = decoder_layer(
|
985 |
-
hidden_states,
|
986 |
-
attention_mask=causal_mask,
|
987 |
-
position_ids=position_ids,
|
988 |
-
past_key_value=past_key_values,
|
989 |
-
output_attentions=output_attentions,
|
990 |
-
use_cache=use_cache,
|
991 |
-
cache_position=cache_position,
|
992 |
-
)
|
993 |
-
|
994 |
-
hidden_states = layer_outputs[0]
|
995 |
-
|
996 |
-
if use_cache:
|
997 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
998 |
-
|
999 |
-
if output_attentions:
|
1000 |
-
all_self_attns += (layer_outputs[1],)
|
1001 |
-
|
1002 |
-
hidden_states = self.norm(hidden_states)
|
1003 |
-
|
1004 |
-
# add hidden states from the last decoder layer
|
1005 |
-
if output_hidden_states:
|
1006 |
-
all_hidden_states += (hidden_states,)
|
1007 |
-
|
1008 |
-
next_cache = None
|
1009 |
-
if use_cache:
|
1010 |
-
next_cache = (
|
1011 |
-
next_decoder_cache.to_legacy_cache()
|
1012 |
-
if isinstance(next_decoder_cache, Cache)
|
1013 |
-
else next_decoder_cache
|
1014 |
-
)
|
1015 |
-
if not return_dict:
|
1016 |
-
return tuple(
|
1017 |
-
v
|
1018 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1019 |
-
if v is not None
|
1020 |
-
)
|
1021 |
-
return BaseModelOutputWithPast(
|
1022 |
-
last_hidden_state=hidden_states,
|
1023 |
-
past_key_values=next_cache,
|
1024 |
-
hidden_states=all_hidden_states,
|
1025 |
-
attentions=all_self_attns,
|
1026 |
-
)
|
1027 |
-
|
1028 |
-
def _update_causal_mask(self, attention_mask, input_tensor):
|
1029 |
-
if self.config._attn_implementation == "flash_attention_2":
|
1030 |
-
if attention_mask is not None and 0.0 in attention_mask:
|
1031 |
-
return attention_mask
|
1032 |
-
return None
|
1033 |
-
|
1034 |
-
batch_size, seq_length = input_tensor.shape[:2]
|
1035 |
-
dtype = input_tensor.dtype
|
1036 |
-
device = input_tensor.device
|
1037 |
-
|
1038 |
-
# support going beyond cached `max_position_embedding`
|
1039 |
-
if seq_length > self.causal_mask.shape[-1]:
|
1040 |
-
causal_mask = torch.full(
|
1041 |
-
(2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]),
|
1042 |
-
fill_value=1,
|
1043 |
-
)
|
1044 |
-
self.register_buffer(
|
1045 |
-
"causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
|
1046 |
-
)
|
1047 |
-
|
1048 |
-
# We use the current dtype to avoid any overflows
|
1049 |
-
min_dtype = torch.finfo(dtype).min
|
1050 |
-
causal_mask = (
|
1051 |
-
self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype)
|
1052 |
-
* min_dtype
|
1053 |
-
)
|
1054 |
-
|
1055 |
-
causal_mask = causal_mask.to(dtype=dtype, device=device)
|
1056 |
-
if attention_mask is not None and attention_mask.dim() == 2:
|
1057 |
-
mask_length = attention_mask.shape[-1]
|
1058 |
-
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
|
1059 |
-
:, None, None, :
|
1060 |
-
].eq(0.0)
|
1061 |
-
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(
|
1062 |
-
padding_mask, min_dtype
|
1063 |
-
)
|
1064 |
-
|
1065 |
-
if self.config._attn_implementation == "sdpa" and attention_mask is not None:
|
1066 |
-
# For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
1067 |
-
is_tracing = (
|
1068 |
-
torch.jit.is_tracing()
|
1069 |
-
or isinstance(input_tensor, torch.fx.Proxy)
|
1070 |
-
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
1071 |
-
)
|
1072 |
-
if not is_tracing and torch.any(attention_mask != 1):
|
1073 |
-
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
|
1074 |
-
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1075 |
-
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1076 |
-
causal_mask = causal_mask.mul(
|
1077 |
-
~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True)
|
1078 |
-
).to(dtype)
|
1079 |
-
|
1080 |
-
return causal_mask
|
1081 |
-
|
1082 |
-
|
1083 |
-
class OpenELMForCausalLM(OpenELMPreTrainedModel):
|
1084 |
-
_tied_weights_keys = ["lm_head.weight"]
|
1085 |
-
|
1086 |
-
def __init__(self, config: OpenELMConfig):
|
1087 |
-
super().__init__(config)
|
1088 |
-
self.transformer = OpenELMModel(config)
|
1089 |
-
self.vocab_size = config.vocab_size
|
1090 |
-
if config.share_input_output_layers:
|
1091 |
-
self.lm_head = None
|
1092 |
-
else:
|
1093 |
-
self.lm_head = nn.Linear(config.model_dim, config.vocab_size, bias=False)
|
1094 |
-
|
1095 |
-
# Initialize weights and apply final processing
|
1096 |
-
self.post_init()
|
1097 |
-
|
1098 |
-
def get_input_embeddings(self):
|
1099 |
-
return self.transformer.token_embeddings
|
1100 |
-
|
1101 |
-
def set_input_embeddings(self, value):
|
1102 |
-
self.transformer.token_embeddings = value
|
1103 |
-
|
1104 |
-
def get_output_embeddings(self):
|
1105 |
-
return self.lm_head
|
1106 |
-
|
1107 |
-
def set_output_embeddings(self, new_embeddings):
|
1108 |
-
self.lm_head = new_embeddings
|
1109 |
-
|
1110 |
-
def set_decoder(self, decoder):
|
1111 |
-
self.transformer = decoder
|
1112 |
-
|
1113 |
-
def get_decoder(self):
|
1114 |
-
return self.transformer
|
1115 |
-
|
1116 |
-
def forward(
|
1117 |
-
self,
|
1118 |
-
input_ids: torch.LongTensor = None,
|
1119 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1120 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1121 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1122 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1123 |
-
labels: Optional[torch.LongTensor] = None,
|
1124 |
-
use_cache: Optional[bool] = None,
|
1125 |
-
output_attentions: Optional[bool] = None,
|
1126 |
-
output_hidden_states: Optional[bool] = None,
|
1127 |
-
return_dict: Optional[bool] = None,
|
1128 |
-
cache_position: Optional[torch.LongTensor] = None,
|
1129 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1130 |
-
output_attentions = (
|
1131 |
-
output_attentions
|
1132 |
-
if output_attentions is not None
|
1133 |
-
else self.config.output_attentions
|
1134 |
-
)
|
1135 |
-
output_hidden_states = (
|
1136 |
-
output_hidden_states
|
1137 |
-
if output_hidden_states is not None
|
1138 |
-
else self.config.output_hidden_states
|
1139 |
-
)
|
1140 |
-
return_dict = (
|
1141 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1142 |
-
)
|
1143 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1144 |
-
outputs = self.transformer(
|
1145 |
-
input_ids=input_ids,
|
1146 |
-
attention_mask=attention_mask,
|
1147 |
-
position_ids=position_ids,
|
1148 |
-
past_key_values=past_key_values,
|
1149 |
-
inputs_embeds=inputs_embeds,
|
1150 |
-
use_cache=use_cache,
|
1151 |
-
output_attentions=output_attentions,
|
1152 |
-
output_hidden_states=output_hidden_states,
|
1153 |
-
return_dict=return_dict,
|
1154 |
-
cache_position=cache_position,
|
1155 |
-
)
|
1156 |
-
|
1157 |
-
hidden_states = outputs[0]
|
1158 |
-
if self.lm_head is None:
|
1159 |
-
# shared
|
1160 |
-
logits = F.linear(
|
1161 |
-
hidden_states, weight=self.transformer.token_embeddings.weight
|
1162 |
-
)
|
1163 |
-
else:
|
1164 |
-
logits = self.lm_head(hidden_states)
|
1165 |
-
logits = logits[:, : self.config.vocab_size]
|
1166 |
-
loss = None
|
1167 |
-
if labels is not None:
|
1168 |
-
# Shift so that tokens < n predict n
|
1169 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
1170 |
-
shift_labels = labels[..., 1:].contiguous()
|
1171 |
-
# Flatten the tokens
|
1172 |
-
loss_fct = CrossEntropyLoss()
|
1173 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1174 |
-
shift_labels = shift_labels.view(-1)
|
1175 |
-
# Enable model parallelism
|
1176 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
1177 |
-
loss = loss_fct(shift_logits, shift_labels)
|
1178 |
-
|
1179 |
-
if not return_dict:
|
1180 |
-
output = (logits,) + outputs[1:]
|
1181 |
-
return (loss,) + output if loss is not None else output
|
1182 |
-
|
1183 |
-
return CausalLMOutputWithPast(
|
1184 |
-
loss=loss,
|
1185 |
-
logits=logits,
|
1186 |
-
past_key_values=outputs.past_key_values,
|
1187 |
-
hidden_states=outputs.hidden_states,
|
1188 |
-
attentions=outputs.attentions,
|
1189 |
-
)
|
1190 |
-
|
1191 |
-
def prepare_inputs_for_generation(
|
1192 |
-
self,
|
1193 |
-
input_ids,
|
1194 |
-
past_key_values=None,
|
1195 |
-
attention_mask=None,
|
1196 |
-
inputs_embeds=None,
|
1197 |
-
**kwargs,
|
1198 |
-
):
|
1199 |
-
past_length = 0
|
1200 |
-
if past_key_values is not None:
|
1201 |
-
if isinstance(past_key_values, Cache):
|
1202 |
-
cache_length = past_key_values.get_seq_length()
|
1203 |
-
past_length = past_key_values.seen_tokens
|
1204 |
-
max_cache_length = past_key_values.get_max_length()
|
1205 |
-
else:
|
1206 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
1207 |
-
max_cache_length = None
|
1208 |
-
|
1209 |
-
# Keep only the unprocessed tokens:
|
1210 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1211 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1212 |
-
# input)
|
1213 |
-
if (
|
1214 |
-
attention_mask is not None
|
1215 |
-
and attention_mask.shape[1] > input_ids.shape[1]
|
1216 |
-
):
|
1217 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1218 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1219 |
-
# input_ids based on the past_length.
|
1220 |
-
elif past_length < input_ids.shape[1]:
|
1221 |
-
input_ids = input_ids[:, past_length:]
|
1222 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1223 |
-
|
1224 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1225 |
-
if (
|
1226 |
-
max_cache_length is not None
|
1227 |
-
and attention_mask is not None
|
1228 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
1229 |
-
):
|
1230 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
1231 |
-
|
1232 |
-
position_ids = kwargs.get("position_ids", None)
|
1233 |
-
if attention_mask is not None and position_ids is None:
|
1234 |
-
# create position_ids on the fly for batch generation
|
1235 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
1236 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1237 |
-
if past_key_values:
|
1238 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1239 |
-
|
1240 |
-
if self.generation_config.cache_implementation == "static":
|
1241 |
-
# generation with static cache
|
1242 |
-
cache_position = kwargs.get("cache_position", None)
|
1243 |
-
if cache_position is None:
|
1244 |
-
past_length = 0
|
1245 |
-
else:
|
1246 |
-
past_length = cache_position[-1] + 1
|
1247 |
-
input_ids = input_ids[:, past_length:]
|
1248 |
-
position_ids = position_ids[:, past_length:]
|
1249 |
-
|
1250 |
-
# we should only keep a `cache_position` in generate, and do +=1.
|
1251 |
-
# same goes for position ids. Could also help with continued generation.
|
1252 |
-
cache_position = torch.arange(
|
1253 |
-
past_length,
|
1254 |
-
past_length + position_ids.shape[-1],
|
1255 |
-
device=position_ids.device,
|
1256 |
-
)
|
1257 |
-
|
1258 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1259 |
-
if inputs_embeds is not None and past_key_values is None:
|
1260 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
1261 |
-
else:
|
1262 |
-
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1263 |
-
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1264 |
-
# We could use `next_tokens` directly instead.
|
1265 |
-
model_inputs = {"input_ids": input_ids.contiguous()}
|
1266 |
-
|
1267 |
-
model_inputs.update(
|
1268 |
-
{
|
1269 |
-
"position_ids": position_ids.contiguous(),
|
1270 |
-
"cache_position": cache_position,
|
1271 |
-
"past_key_values": past_key_values,
|
1272 |
-
"use_cache": kwargs.get("use_cache"),
|
1273 |
-
"attention_mask": attention_mask,
|
1274 |
-
}
|
1275 |
-
)
|
1276 |
-
return model_inputs
|
1277 |
-
|
1278 |
-
@staticmethod
|
1279 |
-
def _reorder_cache(past_key_values, beam_idx):
|
1280 |
-
reordered_past = ()
|
1281 |
-
for layer_past in past_key_values:
|
1282 |
-
reordered_past += (
|
1283 |
-
tuple(
|
1284 |
-
past_state.index_select(0, beam_idx.to(past_state.device))
|
1285 |
-
for past_state in layer_past
|
1286 |
-
),
|
1287 |
-
)
|
1288 |
-
return reordered_past
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|