jiang784 commited on
Commit
13408df
1 Parent(s): 7db2861

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -273
README.md DELETED
@@ -1,273 +0,0 @@
1
- ---
2
- license: mit
3
- ---
4
-
5
- For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
6
-
7
- # BGE-M3 ([paper](https://arxiv.org/pdf/2402.03216.pdf), [code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3))
8
-
9
- In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
10
- - Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
11
- - Multi-Linguality: It can support more than 100 working languages.
12
- - Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
13
-
14
- **Some suggestions for retrieval pipeline in RAG:**
15
- We recommend to use following pipeline: hybrid retrieval + re-ranking.
16
- - Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities.
17
- A classic example: using both embedding retrieval and the BM25 algorithm.
18
- Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval.
19
- This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
20
- - As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model.
21
- Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text.
22
-
23
-
24
- ## News:
25
- - 2/6/2024: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
26
- - 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
27
-
28
-
29
- ## Specs
30
-
31
- - Model
32
-
33
- | Model Name | Dimension | Sequence Length | Introduction |
34
- |:----:|:---:|:---:|:---:|
35
- | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 | multilingual; unified fine-tuning (dense, sparse, and colbert) from bge-m3-unsupervised|
36
- | [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised) | 1024 | 8192 | multilingual; contrastive learning from bge-m3-retromae |
37
- | [BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) | -- | 8192 | multilingual; extend the max_length of [xlm-roberta](https://huggingface.co/FacebookAI/xlm-roberta-large) to 8192 and further pretrained via [retromae](https://github.com/staoxiao/RetroMAE)|
38
- | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | English model |
39
- | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | English model |
40
- | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | English model |
41
-
42
- - Data
43
-
44
- | Dataset | Introduction |
45
- |:----:|:---:|
46
- | [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages|
47
-
48
-
49
- ## FAQ
50
-
51
- **1. Introduction for different retrieval methods**
52
-
53
- - Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
54
- - Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
55
- - Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).
56
-
57
- **2. Comparison with BGE-v1.5 and other monolingual models**
58
-
59
- BGE-M3 is a multilingual model, and its ability in monolingual embedding retrieval may not surpass models specifically designed for single languages.
60
- However, we still recommend trying BGE-M3 because of its versatility (support for multiple languages and long texts).
61
- Moreover, it can simultaneously generate multiple representations, and using them together can enhance accuracy and generalization,
62
- unlike most existing models that can only perform dense retrieval.
63
-
64
- In the open-source community, there are many excellent models (e.g., jina-embedding, colbert, e5, etc),
65
- and users can choose a model that suits their specific needs based on practical considerations,
66
- such as whether to require multilingual or cross-language support, and whether to process long texts.
67
-
68
- **3. How to use BGE-M3 in other projects?**
69
-
70
- For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE.
71
- The only difference is that the BGE-M3 model no longer requires adding instructions to the queries.
72
- For sparse retrieval methods, most open-source libraries currently do not support direct utilization of the BGE-M3 model.
73
- Contributions from the community are welcome.
74
-
75
-
76
- In our experiments, we use [Pyserini](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR#hybrid-retrieval-dense--sparse) and Faiss to do hybrid retrieval.
77
- **Now you can ou can try the hybrid mode of BGE-M3 in [Vespa](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb
78
- ). Thanks @jobergum.**
79
-
80
-
81
- **4. How to fine-tune bge-M3 model?**
82
-
83
- You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
84
- to fine-tune the dense embedding.
85
-
86
- Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released.
87
-
88
-
89
-
90
-
91
- ## Usage
92
-
93
- Install:
94
- ```
95
- git clone https://github.com/FlagOpen/FlagEmbedding.git
96
- cd FlagEmbedding
97
- pip install -e .
98
- ```
99
- or:
100
- ```
101
- pip install -U FlagEmbedding
102
- ```
103
-
104
-
105
-
106
- ### Generate Embedding for text
107
-
108
- - Dense Embedding
109
- ```python
110
- from FlagEmbedding import BGEM3FlagModel
111
-
112
- model = BGEM3FlagModel('BAAI/bge-m3',
113
- use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
114
-
115
- sentences_1 = ["What is BGE M3?", "Defination of BM25"]
116
- sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
117
- "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
118
-
119
- embeddings_1 = model.encode(sentences_1,
120
- batch_size=12,
121
- max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
122
- )['dense_vecs']
123
- embeddings_2 = model.encode(sentences_2)['dense_vecs']
124
- similarity = embeddings_1 @ embeddings_2.T
125
- print(similarity)
126
- # [[0.6265, 0.3477], [0.3499, 0.678 ]]
127
- ```
128
- You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
129
- Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.
130
-
131
-
132
- - Sparse Embedding (Lexical Weight)
133
- ```python
134
- from FlagEmbedding import BGEM3FlagModel
135
-
136
- model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
137
-
138
- sentences_1 = ["What is BGE M3?", "Defination of BM25"]
139
- sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
140
- "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
141
-
142
- output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
143
- output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
144
-
145
- # you can see the weight for each token:
146
- print(model.convert_id_to_token(output_1['lexical_weights']))
147
- # [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092},
148
- # {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]
149
-
150
-
151
- # compute the scores via lexical mathcing
152
- lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
153
- print(lexical_scores)
154
- # 0.19554901123046875
155
-
156
- print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
157
- # 0.0
158
- ```
159
-
160
- - Multi-Vector (ColBERT)
161
- ```python
162
- from FlagEmbedding import BGEM3FlagModel
163
-
164
- model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
165
-
166
- sentences_1 = ["What is BGE M3?", "Defination of BM25"]
167
- sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
168
- "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
169
-
170
- output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
171
- output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
172
-
173
- print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
174
- print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
175
- # 0.7797
176
- # 0.4620
177
- ```
178
-
179
-
180
- ### Compute score for text pairs
181
- Input a list of text pairs, you can get the scores computed by different methods.
182
- ```python
183
- from FlagEmbedding import BGEM3FlagModel
184
-
185
- model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
186
-
187
- sentences_1 = ["What is BGE M3?", "Defination of BM25"]
188
- sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
189
- "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
190
-
191
- sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
192
-
193
- print(model.compute_score(sentence_pairs,
194
- max_passage_length=128, # a smaller max length leads to a lower latency
195
- weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
196
-
197
- # {
198
- # 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
199
- # 'sparse': [0.195556640625, 0.00879669189453125, 0.0, 0.1802978515625],
200
- # 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
201
- # 'sparse+dense': [0.482503205537796, 0.23454029858112335, 0.2332356721162796, 0.5122477412223816],
202
- # 'colbert+sparse+dense': [0.6013619303703308, 0.3255828022956848, 0.32089319825172424, 0.6232916116714478]
203
- # }
204
- ```
205
-
206
-
207
-
208
-
209
- ## Evaluation
210
-
211
-
212
- **Currently, the results of BM25 on non-English data are incorrect.
213
- We will review our testing process and update the paper as soon as possible.
214
- For more powerful BM25, you can refer to this [repo](https://github.com/carlos-lassance/bm25_mldr).
215
- Thanks to the community for the reminder and to carlos-lassance for providing the results.**
216
-
217
-
218
- - Multilingual (Miracl dataset)
219
-
220
- ![avatar](./imgs/miracl.jpg)
221
-
222
- - Cross-lingual (MKQA dataset)
223
-
224
- ![avatar](./imgs/mkqa.jpg)
225
-
226
- - Long Document Retrieval
227
- - MLDR:
228
- ![avatar](./imgs/long.jpg)
229
- Please note that [MLDR](https://huggingface.co/datasets/Shitao/MLDR) is a document retrieval dataset we constructed via LLM,
230
- covering 13 languages, including test set, validation set, and training set.
231
- We utilized the training set from MLDR to enhance the model's long document retrieval capabilities.
232
- Therefore, comparing baselines with `Dense w.o.long`(fine-tuning without long document dataset) is more equitable.
233
- Additionally, this long document retrieval dataset will be open-sourced to address the current lack of open-source multilingual long text retrieval datasets.
234
- We believe that this data will be helpful for the open-source community in training document retrieval models.
235
-
236
- - NarritiveQA:
237
- ![avatar](./imgs/nqa.jpg)
238
-
239
-
240
- ## Training
241
- - Self-knowledge Distillation: combining multiple outputs from different
242
- retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
243
- - Efficient Batching: Improve the efficiency when fine-tuning on long text.
244
- The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
245
- - MCLS: A simple method to improve the performance on long text without fine-tuning.
246
- If you have no enough resource to fine-tuning model with long text, the method is useful.
247
-
248
- Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
249
-
250
- **The fine-tuning codes and datasets will be open-sourced in the near future.**
251
-
252
-
253
- ## Acknowledgement
254
-
255
- Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
256
- Thanks the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [pyserial](https://github.com/pyserial/pyserial).
257
-
258
-
259
-
260
- ## Citation
261
-
262
- If you find this repository useful, please consider giving a star :star: and citation
263
-
264
- ```
265
- @misc{bge-m3,
266
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
267
- author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
268
- year={2024},
269
- eprint={2402.03216},
270
- archivePrefix={arXiv},
271
- primaryClass={cs.CL}
272
- }
273
- ```