|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from .basic import UNetBlock |
|
from modules.general.utils import ( |
|
append_dims, |
|
ConvNd, |
|
normalization, |
|
zero_module, |
|
) |
|
|
|
|
|
class ResBlock(UNetBlock): |
|
r"""A residual block that can optionally change the number of channels. |
|
|
|
Args: |
|
channels: the number of input channels. |
|
emb_channels: the number of timestep embedding channels. |
|
dropout: the rate of dropout. |
|
out_channels: if specified, the number of out channels. |
|
use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
dims: determines if the signal is 1D, 2D, or 3D. |
|
up: if True, use this block for upsampling. |
|
down: if True, use this block for downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout: float = 0.0, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
up=False, |
|
down=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
|
|
self.in_layers = nn.Sequential( |
|
normalization(channels), |
|
nn.SiLU(), |
|
ConvNd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
ConvNd( |
|
dims, |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
1, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
normalization(self.out_channels), |
|
nn.SiLU(), |
|
nn.Dropout(p=dropout), |
|
zero_module( |
|
ConvNd(dims, self.out_channels, self.out_channels, 3, padding=1) |
|
), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = ConvNd( |
|
dims, channels, self.out_channels, 3, padding=1 |
|
) |
|
else: |
|
self.skip_connection = ConvNd(dims, channels, self.out_channels, 1) |
|
|
|
def forward(self, x, emb): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
|
|
x: an [N x C x ...] Tensor of features. |
|
emb: an [N x emb_channels x ...] Tensor of timestep embeddings. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb) |
|
emb_out = append_dims(emb_out, h.dim()) |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = torch.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
|
|
class Upsample(nn.Module): |
|
r"""An upsampling layer with an optional convolution. |
|
|
|
Args: |
|
channels: channels in the inputs and outputs. |
|
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
out_channels: if specified, the number of out channels. |
|
""" |
|
|
|
def __init__(self, channels, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.dims = dims |
|
self.conv = ConvNd(dims, self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
x = F.interpolate( |
|
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" |
|
) |
|
else: |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
r"""A downsampling layer with an optional convolution. |
|
|
|
Args: |
|
channels: channels in the inputs and outputs. |
|
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
out_channels: if specified, the number of output channels. |
|
""" |
|
|
|
def __init__(self, channels, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
self.op = ConvNd( |
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|