|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from modules.encoder.position_encoder import PositionEncoder |
|
from modules.general.utils import append_dims, ConvNd, normalization, zero_module |
|
from .attention import AttentionBlock |
|
from .resblock import Downsample, ResBlock, Upsample |
|
|
|
|
|
class UNet(nn.Module): |
|
r"""The full UNet model with attention and timestep embedding. |
|
|
|
Args: |
|
dims: determines if the signal is 1D (temporal), 2D(spatial). |
|
in_channels: channels in the input Tensor. |
|
model_channels: base channel count for the model. |
|
out_channels: channels in the output Tensor. |
|
num_res_blocks: number of residual blocks per downsample. |
|
channel_mult: channel multiplier for each level of the UNet. |
|
num_attn_blocks: number of attention blocks at place. |
|
attention_resolutions: a collection of downsample rates at which attention will |
|
take place. May be a set, list, or tuple. For example, if this contains 4, |
|
then at 4x downsampling, attention will be used. |
|
num_heads: the number of attention heads in each attention layer. |
|
num_head_channels: if specified, ignore num_heads and instead use a fixed |
|
channel width per attention head. |
|
d_context: if specified, use for cross-attention channel project. |
|
p_dropout: the dropout probability. |
|
use_self_attention: Apply self attention before cross attention. |
|
num_classes: if specified (as an int), then this model will be class-conditional |
|
with ``num_classes`` classes. |
|
use_extra_film: if specified, use an extra FiLM-like conditioning mechanism. |
|
d_emb: if specified, use for FiLM-like conditioning. |
|
use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
resblock_updown: use residual blocks for up/downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dims: int = 1, |
|
in_channels: int = 100, |
|
model_channels: int = 128, |
|
out_channels: int = 100, |
|
h_dim: int = 128, |
|
num_res_blocks: int = 1, |
|
channel_mult: tuple = (1, 2, 4), |
|
num_attn_blocks: int = 1, |
|
attention_resolutions: tuple = (1, 2, 4), |
|
num_heads: int = 1, |
|
num_head_channels: int = -1, |
|
d_context: int = None, |
|
context_hdim: int = 128, |
|
p_dropout: float = 0.0, |
|
num_classes: int = -1, |
|
use_extra_film: str = None, |
|
d_emb: int = None, |
|
use_scale_shift_norm: bool = True, |
|
resblock_updown: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.dims = dims |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.channel_mult = channel_mult |
|
self.num_attn_blocks = num_attn_blocks |
|
self.attention_resolutions = attention_resolutions |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.d_context = d_context |
|
self.p_dropout = p_dropout |
|
self.num_classes = num_classes |
|
self.use_extra_film = use_extra_film |
|
self.d_emb = d_emb |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
self.resblock_updown = resblock_updown |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.pos_enc = PositionEncoder(model_channels, time_embed_dim) |
|
|
|
assert ( |
|
num_classes == -1 or use_extra_film is None |
|
), "You cannot set both num_classes and use_extra_film." |
|
|
|
if self.num_classes > 0: |
|
|
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim, max_norm=1.0) |
|
elif use_extra_film is not None: |
|
assert ( |
|
d_emb is not None |
|
), "d_emb must be specified if use_extra_film is not None" |
|
assert use_extra_film in [ |
|
"add", |
|
"concat", |
|
], f"use_extra_film only supported by add or concat. Your input is {use_extra_film}" |
|
self.use_extra_film = use_extra_film |
|
self.film_emb = ConvNd(dims, d_emb, time_embed_dim, 1) |
|
if use_extra_film == "concat": |
|
time_embed_dim *= 2 |
|
|
|
|
|
ch = input_ch = int(channel_mult[0] * model_channels) |
|
self.input_blocks = nn.ModuleList( |
|
[UNetSequential(ConvNd(dims, in_channels, ch, 3, padding=1))] |
|
) |
|
self._feature_size = ch |
|
input_block_chans = [ch] |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
p_dropout, |
|
out_channels=int(mult * model_channels), |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(mult * model_channels) |
|
if ds in attention_resolutions: |
|
for _ in range(num_attn_blocks): |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
encoder_channels=d_context, |
|
dims=dims, |
|
h_dim=h_dim // (level + 1), |
|
encoder_hdim=context_hdim, |
|
p_dropout=p_dropout, |
|
) |
|
) |
|
self.input_blocks.append(UNetSequential(*layers)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
UNetSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
p_dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample(ch, dims=dims, out_channels=out_ch) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
|
|
self.middle_block = UNetSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
p_dropout, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
AttentionBlock( |
|
ch, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
encoder_channels=d_context, |
|
dims=dims, |
|
h_dim=h_dim // (level + 1), |
|
encoder_hdim=context_hdim, |
|
p_dropout=p_dropout, |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
p_dropout, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self._feature_size += ch |
|
|
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in tuple(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
ResBlock( |
|
ch + ich, |
|
time_embed_dim, |
|
p_dropout, |
|
out_channels=int(model_channels * mult), |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(model_channels * mult) |
|
if ds in attention_resolutions: |
|
for _ in range(num_attn_blocks): |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
encoder_channels=d_context, |
|
dims=dims, |
|
h_dim=h_dim // (level + 1), |
|
encoder_hdim=context_hdim, |
|
p_dropout=p_dropout, |
|
) |
|
) |
|
if level and i == num_res_blocks: |
|
out_ch = ch |
|
layers.append( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
p_dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
) |
|
if resblock_updown |
|
else Upsample(ch, dims=dims, out_channels=out_ch) |
|
) |
|
ds //= 2 |
|
self.output_blocks.append(UNetSequential(*layers)) |
|
self._feature_size += ch |
|
|
|
|
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
nn.SiLU(), |
|
zero_module(ConvNd(dims, input_ch, out_channels, 3, padding=1)), |
|
) |
|
|
|
def forward(self, x, timesteps=None, context=None, y=None, **kwargs): |
|
r"""Apply the model to an input batch. |
|
|
|
Args: |
|
x: an [N x C x ...] Tensor of inputs. |
|
timesteps: a 1-D batch of timesteps, i.e. [N]. |
|
context: conditioning Tensor with shape of [N x ``d_context`` x ...] plugged |
|
in via cross attention. |
|
y: an [N] Tensor of labels, if **class-conditional**. |
|
an [N x ``d_emb`` x ...] Tensor if **film-embed conditional**. |
|
|
|
Returns: |
|
an [N x C x ...] Tensor of outputs. |
|
""" |
|
assert (y is None) or ( |
|
(y is not None) |
|
and ((self.num_classes > 0) or (self.use_extra_film is not None)) |
|
), f"y must be specified if num_classes or use_extra_film is not None. \nGot num_classes: {self.num_classes}\t\nuse_extra_film: {self.use_extra_film}\t\n" |
|
|
|
hs = [] |
|
emb = self.pos_enc(timesteps) |
|
emb = append_dims(emb, x.dim()) |
|
|
|
if self.num_classes > 0: |
|
assert y.size() == (x.size(0),) |
|
emb = emb + self.label_emb(y) |
|
elif self.use_extra_film is not None: |
|
assert y.size() == (x.size(0), self.d_emb, *x.size()[2:]) |
|
y = self.film_emb(y) |
|
if self.use_extra_film == "add": |
|
emb = emb + y |
|
elif self.use_extra_film == "concat": |
|
emb = torch.cat([emb, y], dim=1) |
|
|
|
h = x |
|
for module in self.input_blocks: |
|
h = module(h, emb, context) |
|
hs.append(h) |
|
h = self.middle_block(h, emb, context) |
|
for module in self.output_blocks: |
|
h = torch.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb, context) |
|
|
|
return self.out(h) |
|
|
|
|
|
class UNetSequential(nn.Sequential): |
|
r"""A sequential module that passes embeddings to the children that support it.""" |
|
|
|
def forward(self, x, emb=None, context=None): |
|
for layer in self: |
|
if isinstance(layer, ResBlock): |
|
x = layer(x, emb) |
|
elif isinstance(layer, AttentionBlock): |
|
x = layer(x, context) |
|
else: |
|
x = layer(x) |
|
return x |
|
|