|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import einops |
|
from torch.nn.utils import spectral_norm, weight_norm |
|
|
|
CONV_NORMALIZATIONS = frozenset( |
|
[ |
|
"none", |
|
"weight_norm", |
|
"spectral_norm", |
|
"time_layer_norm", |
|
"layer_norm", |
|
"time_group_norm", |
|
] |
|
) |
|
|
|
|
|
class ConvLayerNorm(nn.LayerNorm): |
|
""" |
|
Convolution-friendly LayerNorm that moves channels to last dimensions |
|
before running the normalization and moves them back to original position right after. |
|
""" |
|
|
|
def __init__(self, normalized_shape, **kwargs): |
|
super().__init__(normalized_shape, **kwargs) |
|
|
|
def forward(self, x): |
|
x = einops.rearrange(x, "b ... t -> b t ...") |
|
x = super().forward(x) |
|
x = einops.rearrange(x, "b t ... -> b ... t") |
|
return |
|
|
|
|
|
def apply_parametrization_norm(module: nn.Module, norm: str = "none") -> nn.Module: |
|
assert norm in CONV_NORMALIZATIONS |
|
if norm == "weight_norm": |
|
return weight_norm(module) |
|
elif norm == "spectral_norm": |
|
return spectral_norm(module) |
|
else: |
|
|
|
|
|
return module |
|
|
|
|
|
def get_norm_module( |
|
module: nn.Module, causal: bool = False, norm: str = "none", **norm_kwargs |
|
) -> nn.Module: |
|
"""Return the proper normalization module. If causal is True, this will ensure the returned |
|
module is causal, or return an error if the normalization doesn't support causal evaluation. |
|
""" |
|
assert norm in CONV_NORMALIZATIONS |
|
if norm == "layer_norm": |
|
assert isinstance(module, nn.modules.conv._ConvNd) |
|
return ConvLayerNorm(module.out_channels, **norm_kwargs) |
|
elif norm == "time_group_norm": |
|
if causal: |
|
raise ValueError("GroupNorm doesn't support causal evaluation.") |
|
assert isinstance(module, nn.modules.conv._ConvNd) |
|
return nn.GroupNorm(1, module.out_channels, **norm_kwargs) |
|
else: |
|
return nn.Identity() |
|
|
|
|
|
class NormConv2d(nn.Module): |
|
"""Wrapper around Conv2d and normalization applied to this conv |
|
to provide a uniform interface across normalization approaches. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
norm: str = "none", |
|
norm_kwargs={}, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm) |
|
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs) |
|
self.norm_type = norm |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.norm(x) |
|
return x |
|
|