File size: 1,370 Bytes
3cb5768
 
 
 
7d10d87
3cb5768
 
 
 
 
 
 
 
 
 
 
 
726a713
 
 
3cb5768
 
726a713
 
3cb5768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726a713
3cb5768
 
 
 
726a713
 
3cb5768
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: mit
tags:
- generated_from_trainer
base_model: distil-whisper/distil-large-v3
model-index:
- name: distilwhisper_finetune
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilwhisper_finetune

This model is a fine-tuned version of [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0432
- eval_wer: 3.2604
- eval_runtime: 848.1823
- eval_samples_per_second: 0.825
- eval_steps_per_second: 0.104
- epoch: 1.7857
- step: 250

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1