File size: 3,099 Bytes
61a61bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
task_name: train
run_name: darkman
tags:
- nabucasa
- polish
- darkman
train: true
test: true
ckpt_path: null
seed: 1234
data:
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
name: nabucasa_darkman
train_filelist_path: data/nabucasa_darkman/train.txt
valid_filelist_path: data/nabucasa_darkman/valid.txt
batch_size: 32
num_workers: 20
pin_memory: true
cleaners:
- polish_cleaners
add_blank: true
n_spks: 1
n_fft: 1024
n_feats: 80
sample_rate: 22050
hop_length: 256
win_length: 1024
f_min: 0
f_max: 8000
data_statistics:
mel_mean: -6.495212078094482
mel_std: 2.473719835281372
seed: ${seed}
load_durations: false
model:
_target_: matcha.models.matcha_tts.MatchaTTS
n_vocab: 178
n_spks: ${data.n_spks}
spk_emb_dim: 64
n_feats: 80
data_statistics: ${data.data_statistics}
out_size: null
prior_loss: true
use_precomputed_durations: ${data.load_durations}
encoder:
encoder_type: RoPE Encoder
encoder_params:
n_feats: ${model.n_feats}
n_channels: 192
filter_channels: 768
filter_channels_dp: 256
n_heads: 2
n_layers: 6
kernel_size: 3
p_dropout: 0.1
spk_emb_dim: 64
n_spks: 1
prenet: true
duration_predictor_params:
filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp}
kernel_size: 3
p_dropout: ${model.encoder.encoder_params.p_dropout}
decoder:
channels:
- 256
- 256
dropout: 0.05
attention_head_dim: 64
n_blocks: 1
num_mid_blocks: 2
num_heads: 2
act_fn: snakebeta
cfm:
name: CFM
solver: euler
sigma_min: 0.0001
optimizer:
_target_: torch.optim.Adam
_partial_: true
lr: 0.0001
weight_decay: 0.0
callbacks:
model_checkpoint:
_target_: lightning.pytorch.callbacks.ModelCheckpoint
dirpath: ${paths.output_dir}/checkpoints
filename: checkpoint_{epoch:03d}
monitor: epoch
verbose: false
save_last: true
save_top_k: 10
mode: max
auto_insert_metric_name: true
save_weights_only: false
every_n_train_steps: null
train_time_interval: null
every_n_epochs: 100
save_on_train_epoch_end: null
model_summary:
_target_: lightning.pytorch.callbacks.RichModelSummary
max_depth: 3
rich_progress_bar:
_target_: lightning.pytorch.callbacks.RichProgressBar
logger:
tensorboard:
_target_: lightning.pytorch.loggers.tensorboard.TensorBoardLogger
save_dir: ${paths.output_dir}/tensorboard/
name: null
log_graph: false
default_hp_metric: true
prefix: ''
trainer:
_target_: lightning.pytorch.trainer.Trainer
default_root_dir: ${paths.output_dir}
max_epochs: -1
accelerator: gpu
devices:
- 0
precision: 16-mixed
check_val_every_n_epoch: 1
deterministic: false
gradient_clip_val: 5.0
paths:
root_dir: ${oc.env:PROJECT_ROOT}
data_dir: ${paths.root_dir}/data/
log_dir: ${paths.root_dir}/logs/
output_dir: ${hydra:runtime.output_dir}
work_dir: ${hydra:runtime.cwd}
extras:
ignore_warnings: false
enforce_tags: true
print_config: true
|