task_name: train run_name: darkman tags: - nabucasa - polish - darkman train: true test: true ckpt_path: null seed: 1234 data: _target_: matcha.data.text_mel_datamodule.TextMelDataModule name: nabucasa_darkman train_filelist_path: data/nabucasa_darkman/train.txt valid_filelist_path: data/nabucasa_darkman/valid.txt batch_size: 32 num_workers: 20 pin_memory: true cleaners: - polish_cleaners add_blank: true n_spks: 1 n_fft: 1024 n_feats: 80 sample_rate: 22050 hop_length: 256 win_length: 1024 f_min: 0 f_max: 8000 data_statistics: mel_mean: -6.495212078094482 mel_std: 2.473719835281372 seed: ${seed} load_durations: false model: _target_: matcha.models.matcha_tts.MatchaTTS n_vocab: 178 n_spks: ${data.n_spks} spk_emb_dim: 64 n_feats: 80 data_statistics: ${data.data_statistics} out_size: null prior_loss: true use_precomputed_durations: ${data.load_durations} encoder: encoder_type: RoPE Encoder encoder_params: n_feats: ${model.n_feats} n_channels: 192 filter_channels: 768 filter_channels_dp: 256 n_heads: 2 n_layers: 6 kernel_size: 3 p_dropout: 0.1 spk_emb_dim: 64 n_spks: 1 prenet: true duration_predictor_params: filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp} kernel_size: 3 p_dropout: ${model.encoder.encoder_params.p_dropout} decoder: channels: - 256 - 256 dropout: 0.05 attention_head_dim: 64 n_blocks: 1 num_mid_blocks: 2 num_heads: 2 act_fn: snakebeta cfm: name: CFM solver: euler sigma_min: 0.0001 optimizer: _target_: torch.optim.Adam _partial_: true lr: 0.0001 weight_decay: 0.0 callbacks: model_checkpoint: _target_: lightning.pytorch.callbacks.ModelCheckpoint dirpath: ${paths.output_dir}/checkpoints filename: checkpoint_{epoch:03d} monitor: epoch verbose: false save_last: true save_top_k: 10 mode: max auto_insert_metric_name: true save_weights_only: false every_n_train_steps: null train_time_interval: null every_n_epochs: 100 save_on_train_epoch_end: null model_summary: _target_: lightning.pytorch.callbacks.RichModelSummary max_depth: 3 rich_progress_bar: _target_: lightning.pytorch.callbacks.RichProgressBar logger: tensorboard: _target_: lightning.pytorch.loggers.tensorboard.TensorBoardLogger save_dir: ${paths.output_dir}/tensorboard/ name: null log_graph: false default_hp_metric: true prefix: '' trainer: _target_: lightning.pytorch.trainer.Trainer default_root_dir: ${paths.output_dir} max_epochs: -1 accelerator: gpu devices: - 0 precision: 16-mixed check_val_every_n_epoch: 1 deterministic: false gradient_clip_val: 5.0 paths: root_dir: ${oc.env:PROJECT_ROOT} data_dir: ${paths.root_dir}/data/ log_dir: ${paths.root_dir}/logs/ output_dir: ${hydra:runtime.output_dir} work_dir: ${hydra:runtime.cwd} extras: ignore_warnings: false enforce_tags: true print_config: true