""" Implementation of BERT, using ALiBi and Flash Attention The implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/43950dda456e095969d842fca7a73c5bfe3cecd0/flash_attn/models/bert.py and made modifications to use ALiBi. """ # Copyright (c) 2022, Tri Dao. # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation. # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py import logging from collections.abc import Sequence from functools import partial from typing import Union, List, Optional import warnings import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from transformers.modeling_utils import PreTrainedModel from .configuration_bert import JinaBertConfig from transformers.models.bert.modeling_bert import ( BaseModelOutputWithPoolingAndCrossAttentions, BertForPreTrainingOutput, ) from .bert_padding import ( index_first_axis, index_first_axis_residual, pad_input, unpad_input, ) from .block import Block from .embedding import BertEmbeddings from .mha import MHA from .mlp import FusedMLP, Mlp, GLUMLP try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None try: from flash_attn.ops.triton.layer_norm import layer_norm_fn except ImportError: layer_norm_fn = None try: from flash_attn.losses.cross_entropy import CrossEntropyLoss except ImportError: CrossEntropyLoss = None try: from tqdm.autonotebook import trange except ImportError: trange = None logger = logging.getLogger(__name__) def create_mixer_cls(config, cross_attn=False, return_residual=False): use_flash_attn = config.use_flash_attn if config.use_flash_attn is not None else torch.cuda.is_available() use_qk_norm = config.use_qk_norm fused_bias_fc = config.fused_bias_fc window_size = config.window_size mixer_cls = partial( MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn, dropout=config.attention_probs_dropout_prob, causal=False, fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn, return_residual=return_residual, use_alibi=True, window_size=window_size, qk_norm=use_qk_norm, checkpointing=False, ) return mixer_cls def create_mlp_cls(config, layer_idx=None, return_residual=False): inner_dim = config.intermediate_size mlp_type = config.mlp_type assert mlp_type in ('mlp', 'fused_mlp', 'glu') if mlp_type == 'fused_mlp': assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], ( "fused_mlp only " "supports approximate gelu" ) if mlp_type == 'glu': assert config.hidden_act in ('relu', 'gelu') if mlp_type == 'mlp': approximate = ( "tanh" if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" ) mlp_cls = partial( Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate=approximate), return_residual=return_residual, ) elif mlp_type == 'glu': mlp_cls = partial( GLUMLP, hidden_features=inner_dim, activation=config.hidden_act, use_flash_attn=config.use_flash_attn, hidden_dropout_prob=config.hidden_dropout_prob, return_residual=return_residual, ) elif mlp_type == 'fused_mlp': if FusedMLP is None: raise ImportError("fused_dense is not installed") mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0) # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer if isinstance(mlp_checkpoint_lvl, Sequence): assert layer_idx is not None mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] mlp_cls = partial( FusedMLP, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual, ) else: raise NotImplementedError return mlp_cls def create_block(config, layer_idx=None): last_layer_subset = getattr(config, "last_layer_subset", False) cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1 # TD [2022-12-19]: For cross attention (last layer), we actually want to return the # residual x_kv, not residual x. But it's annoying to change the API (and it only affects # one layer) so we just choose not to return residual in this case. return_residual = not cross_attn mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) block = Block( config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=False, resid_dropout1=config.hidden_dropout_prob, resid_dropout2=config.hidden_dropout_prob, fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False), return_residual=return_residual, ) return block # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 def _init_weights(module, initializer_range=0.02): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if module.padding_idx is not None: nn.init.zeros_(module.weight[module.padding_idx]) class BertEncoder(nn.Module): def __init__(self, config: JinaBertConfig): super().__init__() self.use_flash_attn = config.use_flash_attn if config.use_flash_attn is not None else torch.cuda.is_available() self.layers = nn.ModuleList( [create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)] ) self._grad_checkpointing = False @property def gradient_checkpointing(self): return self._grad_checkpointing @gradient_checkpointing.setter def gradient_checkpointing(self, value): self._grad_checkpointing = value def forward(self, hidden_states, key_padding_mask=None, subset_mask=None): """If subset_mask is not None, we only want output for the subset of the sequence. This means that we only compute the last layer output for these tokens. subset_mask: (batch, seqlen), dtype=torch.bool """ if key_padding_mask is None or not self.use_flash_attn: mixer_kwargs = ( {"key_padding_mask": key_padding_mask.bool()} if key_padding_mask is not None else None ) for layer in self.layers: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if subset_mask is not None: hidden_states = hidden_states[subset_mask] else: batch, seqlen = hidden_states.shape[:2] hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( hidden_states, key_padding_mask ) mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch} if subset_mask is None: for layer in self.layers: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) hidden_states = pad_input(hidden_states, indices, batch, seqlen) else: for layer in self.layers[:-1]: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if key_padding_mask is not None: subset_idx = torch.nonzero( subset_mask[key_padding_mask], as_tuple=False ).flatten() subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad( torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0) ) else: subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad( torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0) ) hidden_states_subset, hidden_states = index_first_axis_residual( hidden_states, subset_idx ) # It's ok to set max_seqlen_q to be much larger mixer_kwargs = { "x_kv": hidden_states, "cu_seqlens": subset_cu_seqlens, "max_seqlen": max_seqlen_in_batch, "cu_seqlens_k": cu_seqlens, "max_seqlen_k": max_seqlen_in_batch, } if self._grad_checkpointing: torch.utils.checkpoint.checkpoint( self.layers[-1], hidden_states_subset, use_reentrant=False, mixer_kwargs=mixer_kwargs ) else: hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs) return hidden_states class BertPooler(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, pool=True): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if pool else hidden_states pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) if self.fused_dropout_add_ln and layer_norm_fn is None: raise ImportError("Triton is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) approximate = ( "tanh" if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" ) self.transform_act_fn = nn.GELU(approximate=approximate) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) if not self.fused_dropout_add_ln: hidden_states = self.layer_norm(hidden_states) else: hidden_states = layer_norm_fn( hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps ) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = JinaBertConfig base_model_prefix = "bert" supports_gradient_checkpointing = True def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BertEncoder): module.gradient_checkpointing = value class BertModel(BertPreTrainedModel): def __init__(self, config: JinaBertConfig, add_pooling_layer=True): super().__init__(config) self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if config.vocab_size % self.pad_vocab_size_multiple != 0: config.vocab_size += self.pad_vocab_size_multiple - ( config.vocab_size % self.pad_vocab_size_multiple ) self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) if self.fused_dropout_add_ln and layer_norm_fn is None: raise ImportError("Triton is not installed") assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"] self.embeddings = BertEmbeddings( config.hidden_size, config.vocab_size, -1, # No position embeddings config.type_vocab_size, padding_idx=config.pad_token_id, ) self.emb_drop = nn.Dropout(config.hidden_dropout_prob) self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None self.emb_pooler = config.emb_pooler self._name_or_path = config._name_or_path if self.emb_pooler is not None: from transformers import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, trust_remote_code=True) else: self.tokenizer = None self.apply(partial(_init_weights, initializer_range=config.initializer_range)) def forward( self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, masked_tokens_mask=None, return_dict=True, ): """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining), we only want the output for the masked tokens. This means that we only compute the last layer output for these tokens. masked_tokens_mask: (batch, seqlen), dtype=torch.bool """ hidden_states = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids ) # TD [2022-12:18]: Don't need to force residual in fp32 # BERT puts embedding LayerNorm before embedding dropout. if not self.fused_dropout_add_ln: hidden_states = self.emb_ln(hidden_states) else: hidden_states = layer_norm_fn( hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps ) hidden_states = self.emb_drop(hidden_states) if masked_tokens_mask is not None: batch_size, seqlen = input_ids.shape[:2] # We also need the first column for the CLS token first_col_mask = torch.zeros( batch_size, seqlen, dtype=torch.bool, device=input_ids.device ) first_col_mask[:, 0] = True subset_mask = masked_tokens_mask | first_col_mask else: subset_mask = None sequence_output = self.encoder( hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask ) if masked_tokens_mask is None: pooled_output = self.pooler(sequence_output) if self.pooler is not None else None else: # TD [2022-03-01]: the indexing here is very tricky. if attention_mask is not None: subset_idx = subset_mask[attention_mask] pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]] else: pool_input = sequence_output[first_col_mask[subset_mask]] sequence_output = sequence_output[masked_tokens_mask[subset_mask]] pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, ) @torch.inference_mode() def encode( self: 'BertModel', sentences: Union[str, List[str]], batch_size: int = 32, show_progress_bar: Optional[bool] = None, output_value: str = 'sentence_embedding', convert_to_numpy: bool = True, convert_to_tensor: bool = False, device: Optional[torch.device] = None, normalize_embeddings: bool = False, **tokenizer_kwargs, ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]: """ Computes sentence embeddings Args: sentences(`str` or `List[str]`): Sentence or sentences to be encoded batch_size(`int`, *optional*, defaults to 32): Batch size for the computation show_progress_bar(`bool`, *optional*, defaults to None): Show a progress bar when encoding sentences. If set to None, progress bar is only shown when `logger.level == logging.INFO` or `logger.level == logging.DEBUG`. output_value(`str`, *optional*, defaults to 'sentence_embedding'): Default sentence_embedding, to get sentence embeddings. Can be set to token_embeddings to get wordpiece token embeddings. Set to None, to get all output values convert_to_numpy(`bool`, *optional*, defaults to True): If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors. convert_to_tensor(`bool`, *optional*, defaults to False): If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy device(`torch.device`, *optional*, defaults to None): Which torch.device to use for the computation normalize_embeddings(`bool`, *optional*, defaults to False): If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used. tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}): Keyword arguments for the tokenizer Returns: By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned. """ if self.emb_pooler is None: warnings.warn("No emb_pooler specified, defaulting to mean pooling.") self.emb_pooler = 'mean' from transformers import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained(self._name_or_path, trust_remote_code=True) if self.emb_pooler != 'mean': raise NotImplementedError is_training = self.training self.eval() if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) if convert_to_tensor: convert_to_numpy = False if output_value != 'sentence_embedding': convert_to_tensor = False convert_to_numpy = False input_was_string = False if isinstance(sentences, str) or not hasattr(sentences, '__len__'): sentences = [sentences] input_was_string = True if device is not None: self.to(device) # TODO: Maybe use better length heuristic? permutation = np.argsort([-len(i) for i in sentences]) inverse_permutation = np.argsort(permutation) sentences = [sentences[idx] for idx in permutation] tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True) tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 8192) tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True) all_embeddings = [] if trange is not None: range_iter = trange( 0, len(sentences), batch_size, desc="Encoding", disable=not show_progress_bar, ) else: range_iter = range(0, len(sentences), batch_size) for i in range_iter: encoded_input = self.tokenizer( sentences[i : i + batch_size], return_tensors='pt', **tokenizer_kwargs, ).to(self.device) token_embs = self.forward(**encoded_input)[0] # Accumulate in fp32 to avoid overflow token_embs = token_embs.float() if output_value == 'token_embeddings': raise NotImplementedError elif output_value is None: raise NotImplementedError else: embeddings = self.mean_pooling( token_embs, encoded_input['attention_mask'] ) if normalize_embeddings: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) if convert_to_numpy: embeddings = embeddings.cpu() all_embeddings.extend(embeddings) all_embeddings = [all_embeddings[idx] for idx in inverse_permutation] if convert_to_tensor: all_embeddings = torch.stack(all_embeddings) elif convert_to_numpy: all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings]) if input_was_string: all_embeddings = all_embeddings[0] self.train(is_training) return all_embeddings def mean_pooling( self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor ): input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() ) return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( input_mask_expanded.sum(1), min=1e-9 ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config: JinaBertConfig): super().__init__(config) # If dense_seq_output, we only need to pass the hidden states for the masked out tokens # (around 15%) to the classifier heads. self.dense_seq_output = getattr(config, "dense_seq_output", False) # If last_layer_subset, we only need the compute the last layer for a subset of tokens # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). self.last_layer_subset = getattr(config, "last_layer_subset", False) if self.last_layer_subset: assert self.dense_seq_output, "last_layer_subset requires dense_seq_output" use_xentropy = getattr(config, "use_xentropy", False) if use_xentropy and CrossEntropyLoss is None: raise ImportError("xentropy_cuda is not installed") loss_cls = ( nn.CrossEntropyLoss if not use_xentropy else partial(CrossEntropyLoss, inplace_backward=True) ) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.mlm_loss = loss_cls(ignore_index=0) self.nsp_loss = loss_cls(ignore_index=-1) # Initialize weights and apply final processing self.apply(partial(_init_weights, initializer_range=config.initializer_range)) self.tie_weights() def tie_weights(self): self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight def get_input_embeddings(self): return self.bert.embeddings.word_embeddings def forward( self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, labels=None, next_sentence_label=None, ): """ If labels are provided, they must be 0 for masked out tokens (as specified in the attention mask). Outputs: if `labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and - the next sentence classification logits of shape [batch_size, 2]. """ masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None outputs = self.bert( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask.bool() if attention_mask is not None else None, masked_tokens_mask=masked_tokens_mask, ) sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output if self.dense_seq_output and labels is not None: masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() if not self.last_layer_subset: sequence_output = index_first_axis( rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx ) prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) if ( self.dense_seq_output and labels is not None ): # prediction_scores are already flattened masked_lm_loss = self.mlm_loss( prediction_scores, labels.flatten()[masked_token_idx] ).float() elif labels is not None: masked_lm_loss = self.mlm_loss( rearrange(prediction_scores, "... v -> (...) v"), rearrange(labels, "... -> (...)"), ).float() else: masked_lm_loss = 0 if next_sentence_label is not None: next_sentence_loss = self.nsp_loss( rearrange(seq_relationship_score, "... t -> (...) t"), rearrange(next_sentence_label, "... -> (...)"), ).float() else: next_sentence_loss = 0 total_loss = masked_lm_loss + next_sentence_loss return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, ) class BertForMaskedLM(BertPreTrainedModel): def __init__(self, config: JinaBertConfig): super().__init__(config) # If dense_seq_output, we only need to pass the hidden states for the masked out tokens # (around 15%) to the classifier heads. self.dense_seq_output = getattr(config, "dense_seq_output", False) # If last_layer_subset, we only need the compute the last layer for a subset of tokens # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). self.last_layer_subset = getattr(config, "last_layer_subset", False) if self.last_layer_subset: assert self.dense_seq_output, "last_layer_subset requires dense_seq_output" use_xentropy = getattr(config, "use_xentropy", False) if use_xentropy and CrossEntropyLoss is None: raise ImportError("xentropy_cuda is not installed") loss_cls = ( nn.CrossEntropyLoss if not use_xentropy else partial(CrossEntropyLoss, inplace_backward=True) ) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.mlm_loss = loss_cls(ignore_index=0) # Initialize weights and apply final processing self.apply(partial(_init_weights, initializer_range=config.initializer_range)) self.tie_weights() def tie_weights(self): self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight def get_input_embeddings(self): return self.bert.embeddings.word_embeddings def forward( self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, labels=None ): masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None outputs = self.bert( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask.bool() if attention_mask is not None else None, masked_tokens_mask=masked_tokens_mask, ) sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output if self.dense_seq_output and labels is not None: masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() if not self.last_layer_subset: sequence_output = index_first_axis( rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx ) prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) if ( self.dense_seq_output and labels is not None ): # prediction_scores are already flattened masked_lm_loss = self.mlm_loss( prediction_scores, labels.flatten()[masked_token_idx] ).float() elif labels is not None: masked_lm_loss = self.mlm_loss( rearrange(prediction_scores, "... v -> (...) v"), rearrange(labels, "... -> (...)"), ).float() else: raise ValueError('MLM labels must not be None') return BertForPreTrainingOutput( loss=masked_lm_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, )