nan commited on
Commit
426746d
1 Parent(s): 6392a28

feat: remove the colber indexing & searching part

Browse files
Files changed (1) hide show
  1. README.md +5 -46
README.md CHANGED
@@ -123,6 +123,9 @@ This new release adds new functionality and performance improvements:
123
  - [Matryoshka embeddings](https://huggingface.co/blog/matryoshka), which allow users to trade between efficiency and precision flexibly.
124
  - Superior retrieval performance when compared to the English-only `jina-colbert-v1-en`.
125
 
 
 
 
126
  ## Usage
127
 
128
  ### Installation
@@ -157,52 +160,6 @@ results = RAG.search(query)
157
  ```
158
 
159
  ### Stanford ColBERT
160
- Typically, you would run the following code to index using the Stanford ColBERT library on a GPU machine. Check the reference at [Stanford ColBERT](https://github.com/stanford-futuredata/ColBERT?tab=readme-ov-file#installation) for more details.
161
-
162
- #### Indexing
163
-
164
- ```python
165
- from colbert import Indexer
166
- from colbert.infra import ColBERTConfig
167
-
168
- if __name__ == "__main__":
169
- config = ColBERTConfig(
170
- doc_maxlen=512,
171
- nbits=2
172
- )
173
- indexer = Indexer(
174
- checkpoint="jinaai/jina-colbert-v2",
175
- config=config,
176
- )
177
- docs = [
178
- "ColBERT is a novel ranking model that adapts deep LMs for efficient retrieval.",
179
- "Jina-ColBERT is a ColBERT-style model but based on JinaBERT so it can support both 8k context length, fast and accurate retrieval."
180
- ]
181
- indexer.index(name='demo', collection=docs)
182
- ```
183
-
184
- #### Searching
185
-
186
- ```python
187
- from colbert import Searcher
188
- from colbert.infra import ColBERTConfig
189
-
190
- k = 10
191
-
192
- if __name__ == "__main__":
193
- config = ColBERTConfig(
194
- query_maxlen=128
195
- )
196
- searcher = Searcher(
197
- index='demo',
198
- config=config
199
- )
200
- query = 'What does ColBERT do?'
201
- results = searcher.search(query, k=k)
202
-
203
- ```
204
-
205
- #### Creating vectors
206
 
207
  ```python
208
  from colbert.infra import ColBERTConfig
@@ -324,6 +281,8 @@ Additionally, we provide the following embedding models, you can also use them f
324
  - [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English bilingual model.
325
  - [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English bilingual model.
326
  - [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): 161 million parameters Spanish-English bilingual model.
 
 
327
 
328
  ## Contact
329
 
 
123
  - [Matryoshka embeddings](https://huggingface.co/blog/matryoshka), which allow users to trade between efficiency and precision flexibly.
124
  - Superior retrieval performance when compared to the English-only `jina-colbert-v1-en`.
125
 
126
+ [`jina-colbert-v1-en`](https://huggingface.co/jinaai/jina-colbert-v1-en)
127
+
128
+
129
  ## Usage
130
 
131
  ### Installation
 
160
  ```
161
 
162
  ### Stanford ColBERT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
  ```python
165
  from colbert.infra import ColBERTConfig
 
281
  - [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English bilingual model.
282
  - [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English bilingual model.
283
  - [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): 161 million parameters Spanish-English bilingual model.
284
+ - [`jina-reranker-v2`](https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual): multilingual reranker model.
285
+ - [`jina-clip-v1`](https://huggingface.co/jinaai/jina-clip-v1): English multimodal (text-image) embedding model.
286
 
287
  ## Contact
288