Update README.md
Browse files
README.md
CHANGED
@@ -10,10 +10,9 @@ license: apache-2.0
|
|
10 |
|
11 |
|
12 |
<p align="center">
|
13 |
-
<b>
|
14 |
</p>
|
15 |
|
16 |
-
The text embedding suit trained by [Jina AI](https://github.com/jina-ai), [Finetuner team](https://github.com/jina-ai/finetuner).
|
17 |
|
18 |
## Intented Usage & Model Info
|
19 |
|
@@ -28,10 +27,10 @@ With a compact size of just 35 million parameters,
|
|
28 |
the model enables lightning-fast inference while still delivering impressive performance.
|
29 |
Additionally, we provide the following options:
|
30 |
|
31 |
-
- jina-embedding-b-en-v1
|
32 |
-
- jina-embedding-l-en-v1
|
33 |
-
- jina-embedding-xl-en-v1
|
34 |
-
- jina-embedding-xxl-en-v1
|
35 |
|
36 |
## Data & Parameters
|
37 |
|
@@ -39,4 +38,25 @@ More info will be released together with the technique report.
|
|
39 |
|
40 |
## Metrics
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
<p align="center">
|
13 |
+
<b>The text embedding suit trained by [Jina AI](https://github.com/jina-ai), [Finetuner team](https://github.com/jina-ai/finetuner).</b>
|
14 |
</p>
|
15 |
|
|
|
16 |
|
17 |
## Intented Usage & Model Info
|
18 |
|
|
|
27 |
the model enables lightning-fast inference while still delivering impressive performance.
|
28 |
Additionally, we provide the following options:
|
29 |
|
30 |
+
- `jina-embedding-b-en-v1`: 110 million parameters.
|
31 |
+
- `jina-embedding-l-en-v1`: 800 million parameters.
|
32 |
+
- `jina-embedding-xl-en-v1`: 3 billion parameters.
|
33 |
+
- `jina-embedding-xxl-en-v1`: 11 billion parameters.
|
34 |
|
35 |
## Data & Parameters
|
36 |
|
|
|
38 |
|
39 |
## Metrics
|
40 |
|
41 |
+
We compared the model against `all-minilm-l6-v2` from sbert and `text-embeddings-ada-002` from OpenAI:
|
42 |
+
|
43 |
+
|FIELD1 |STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact|param |context length|
|
44 |
+
|------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-------|---------|------|
|
45 |
+
|all-minilm-l6-v2 |0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 |33m |256|
|
46 |
+
|all-mpnet--base-v2 |0.726|0.835|0.78 |0.857|0.8 |0.906|0.513 |0.875|0.656 |110m |256|
|
47 |
+
|ada-embedding-002 |0.698|0.833|0.761|0.861|0.86 |0.903|0.685 |0.876|0.726 |Unknown |8024|
|
48 |
+
|jina-embedding-small |0.738|0.781|0.732|0.833|0.785|0.859|0.471 |0.852|0.567 |35m |512|
|
49 |
+
|
50 |
+
For more tasks and metrics, please checkout [MTEB](https://huggingface.co/spaces/mteb/leaderboard) benchmark.
|
51 |
+
|
52 |
+
## Usage
|
53 |
+
|
54 |
+
```python
|
55 |
+
!pip install finetuner[text]
|
56 |
+
|
57 |
+
import finetuner
|
58 |
+
|
59 |
+
|
60 |
+
model = finetuner.get_model('jinaai/jina-embedding-s-en-v1')
|
61 |
+
embeddings = model.encode(['sentence 1', 'sentence 2'])
|
62 |
+
```
|