File size: 6,957 Bytes
0e973a2
 
d3cae21
 
 
 
 
 
 
 
 
0e973a2
d3cae21
0e973a2
 
 
d3cae21
0e973a2
 
 
 
d3cae21
0e973a2
 
d3cae21
 
 
 
0e973a2
 
 
9cf3ad7
ed0eb73
9cf3ad7
 
0e973a2
 
 
 
 
 
 
 
 
 
 
d7aff03
d3cae21
 
 
0e973a2
38ca931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e973a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05fa3e
3e36508
a05fa3e
 
0e973a2
a05fa3e
 
0e973a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05fa3e
 
 
3e36508
a05fa3e
 
 
15981ca
d7aff03
0e973a2
 
 
 
 
 
a05fa3e
0e973a2
 
 
 
 
 
d7aff03
 
 
0e973a2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
datasets:
  - allenai/c4
language: en
inference: false
license: apache-2.0
---
<!-- TODO: add evaluation results here -->
<br><br>

<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>

## Quick Start

The easiest way to starting using `jina-embeddings-v2-base-en` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).


## Intended Usage & Model Info

`jina-embeddings-v2-base-code` is an multilingual **embedding model** speaks **English and 30 widely used programming languages**.
Same as other jina-embeddings-v2 series, it supports **8192** sequence length.

`jina-embeddings-v2-base-code` is based on a Bert architecture (JinaBert) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
The backbone `jina-bert-v2-base-code` is pretrained on the [github-code](https://huggingface.co/datasets/codeparrot/github-code) dataset.
The model is further trained on Jina AI's collection of more than 150 millions of coding question answer and docstring source code pairs.
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.

The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi.
This makes our model useful for a range of use cases, especially when processing long documents is needed, including technical question answering and code search.

This model has 137 million parameters, which enables fast and memory efficient inference, while delivering impressive performance.
Additionally, we provide the following embedding models:

- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings.
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings.
- [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): Spanish-English Bilingual embeddings (soon).

**<details><summary>Supported (Programming) Languages</summary>**
<p>

- English
- Assembly
- Batchfile
- C
- C#
- C++
- CMake
- CSS
- Dockerfile
- FORTRAN
- GO
- Haskell
- HTML
- Java
- JavaScript
- Julia
- Lua
- Makefile
- Markdown
- PHP
- Perl
- PowerShell
- Python
- Ruby
- Rust
- SQL
- Scala
- Shell
- TypeScript
- TeX
- Visual Basic
</p>
</details>

## Data & Parameters

Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923)

## Usage

**<details><summary>Please apply mean pooling when integrating the model.</summary>**
<p>

### Why mean pooling?

`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
It has been proved to be the most effective way to produce high-quality sentence embeddings.
We offer an `encode` function to deal with this.

However, if you would like to do it without using the default `encode` function:

```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

sentences = [
    'Save model to a pickle located at `path` with Python please',
    'def save_act(self, path=None): if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, "w") as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)',
]

tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-code')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-code', trust_remote_code=True)

encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

with torch.no_grad():
    model_output = model(**encoded_input)

embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
```

</p>
</details>

You can use Jina Embedding models directly from transformers package:
```python
!pip install transformers
from transformers import AutoModel
from numpy.linalg import norm

cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-code', trust_remote_code=True)
embeddings = model.encode(
    [
        'Save model to a pickle located at `path` with Python please',
        'def save_act(self, path=None): if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, "w") as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)',
    ]
)
print(cos_sim(embeddings[0], embeddings[1]))
>>> 0.7230249
```

If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:

```python
embeddings = model.encode(
    ['Very long ... code'],
    max_length=2048
)
```

## Plans

1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese.
2. Multimodal embedding models enable Multimodal RAG applications.
3. High-performt rerankers.

## Contact

Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.