File size: 52,776 Bytes
2e3ebcb 290e593 2e3ebcb 424df3c 2e3ebcb 1c61b96 0bb73e5 2e3ebcb 95b4916 2e3ebcb 0bb73e5 95b4916 2e3ebcb 424df3c 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 77af1c7 e3681c2 2e3ebcb 64c81c6 2e3ebcb 424df3c 2e3ebcb 290e593 2e3ebcb 290e593 2e3ebcb 77af1c7 e3681c2 77af1c7 2e3ebcb 77af1c7 2e3ebcb ab85772 2e3ebcb 95b4916 2e3ebcb 290e593 2e3ebcb 1c61b96 2e3ebcb 6cc0f51 2e3ebcb 77af1c7 2e3ebcb 509511d 2e3ebcb 1c61b96 77af1c7 1c61b96 2e3ebcb 509511d 2e3ebcb 1c61b96 77af1c7 1c61b96 2e3ebcb 1c61b96 77af1c7 1c61b96 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 1c61b96 77af1c7 1c61b96 77af1c7 2e3ebcb 95b4916 2e3ebcb 509511d 2e3ebcb 4e13c90 509511d 2e3ebcb 509511d 2e3ebcb 95b4916 2e3ebcb 77af1c7 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 77af1c7 95b4916 2e3ebcb 95b4916 2e3ebcb 13c4251 2e3ebcb 95b4916 2e3ebcb 77af1c7 2e3ebcb 95b4916 2e3ebcb ab85772 2e3ebcb 95b4916 2e3ebcb 424df3c 8542ad8 3eb20d0 424df3c 8542ad8 424df3c 4e13c90 424df3c 3eb20d0 424df3c 13c4251 424df3c 8542ad8 424df3c 8542ad8 424df3c 13c4251 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 509511d 95b4916 77af1c7 95b4916 77af1c7 95b4916 2e3ebcb 509511d 2e3ebcb 509511d 2e3ebcb 77af1c7 509511d 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 509511d 77af1c7 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 77af1c7 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 77af1c7 95b4916 77af1c7 95b4916 2e3ebcb 95b4916 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 2e3ebcb 77af1c7 0bb73e5 d230f23 64c81c6 0bb73e5 64c81c6 0bb73e5 4b000ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 |
# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
import importlib.util
import logging
import re
from collections import OrderedDict
from collections.abc import Sequence
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from einops import rearrange
from transformers import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import MaskedLMOutput,SequenceClassifierOutput
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
from transformers.models.bert.modeling_bert import (
BaseModelOutputWithPoolingAndCrossAttentions,
BertForPreTrainingOutput,
)
from typing import List, Optional, Tuple, Union
from .xlm_padding import (
index_first_axis,
index_first_axis_residual,
pad_input,
unpad_input,
)
from .configuration_xlm_roberta import XLMRobertaFlashConfig
from .block import Block
from .embedding import XLMRobertaEmbeddings
from .mha import MHA
from .mlp import FusedMLP, Mlp
from .stochastic_depth import StochasticDepth
from .rotary import RotaryEmbedding
try:
from flash_attn.ops.fused_dense import FusedDense
except ImportError:
FusedDense = None
try:
from flash_attn.ops.triton.layer_norm import layer_norm_fn
except ImportError:
layer_norm_fn = None
try:
from flash_attn.losses.cross_entropy import CrossEntropyLoss
except ImportError:
CrossEntropyLoss = torch.nn.CrossEntropyLoss
try:
from tqdm.autonotebook import trange
except ImportError:
trange = None
logger = logging.getLogger(__name__)
def get_use_flash_attn(config: XLMRobertaFlashConfig):
if not getattr(config, "use_flash_attn", False):
return False
if not torch.cuda.is_available():
return False
if importlib.util.find_spec("flash_attn") is None:
logger.warning(
'flash_attn is not installed. Using PyTorch native attention implementation.'
)
return False
return True
def create_mixer_cls(config, cross_attn=False, return_residual=False):
use_flash_attn = get_use_flash_attn(config)
fused_bias_fc = getattr(config, "fused_bias_fc", False)
rotary_kwargs = {}
if config.position_embedding_type == "rotary":
rotary_kwargs["rotary_emb_dim"] = getattr(
config, "rotary_emb_dim", config.hidden_size / config.num_attention_heads
)
rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
rotary_kwargs["rotary_emb_scale_base"] = getattr(
config, "rotary_emb_scale_base", None
)
rotary_kwargs["rotary_emb_interleaved"] = getattr(
config, "rotary_emb_interleaved", False
)
mixer_cls = partial(
MHA,
num_heads=config.num_attention_heads,
cross_attn=cross_attn,
dropout=config.attention_probs_dropout_prob,
causal=False,
fused_bias_fc=fused_bias_fc,
use_flash_attn=use_flash_attn,
return_residual=return_residual,
use_alibi=config.position_embedding_type == 'alibi',
**rotary_kwargs,
)
return mixer_cls
def create_mlp_cls(config, layer_idx=None, return_residual=False):
inner_dim = config.intermediate_size
fused_mlp = getattr(config, "fused_mlp", False)
if fused_mlp:
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], (
"fused_mlp only " "supports approximate gelu"
)
if not fused_mlp:
approximate = (
"tanh"
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
mlp_cls = partial(
Mlp,
hidden_features=inner_dim,
activation=partial(F.gelu, approximate=approximate),
return_residual=return_residual,
)
else:
if FusedMLP is None:
raise ImportError("fused_dense is not installed")
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
if isinstance(mlp_checkpoint_lvl, Sequence):
assert layer_idx is not None
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
mlp_cls = partial(
FusedMLP,
hidden_features=inner_dim,
checkpoint_lvl=mlp_checkpoint_lvl,
return_residual=return_residual,
)
return mlp_cls
def create_block(config, layer_idx=None):
last_layer_subset = getattr(config, "last_layer_subset", False)
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects
# one layer) so we just choose not to return residual in this case.
return_residual = not cross_attn
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
block = Block(
config.hidden_size,
mixer_cls,
mlp_cls,
norm_cls=norm_cls,
prenorm=False,
resid_dropout1=config.hidden_dropout_prob,
resid_dropout2=config.hidden_dropout_prob,
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
return_residual=return_residual,
)
return block
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if module.padding_idx is not None:
nn.init.zeros_(module.weight[module.padding_idx])
class XLMRobertaEncoder(nn.Module):
def __init__(self, config: XLMRobertaFlashConfig):
super().__init__()
self.use_flash_attn = get_use_flash_attn(config)
self.layers = nn.ModuleList(
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
)
self._grad_checkpointing = False
@property
def gradient_checkpointing(self):
return self._grad_checkpointing
@gradient_checkpointing.setter
def gradient_checkpointing(self, value):
self._grad_checkpointing = value
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None, task=None):
"""If subset_mask is not None, we only want output for the subset of the sequence.
This means that we only compute the last layer output for these tokens.
subset_mask: (batch, seqlen), dtype=torch.bool
"""
if key_padding_mask is None or not self.use_flash_attn:
mixer_kwargs = (
{"key_padding_mask": key_padding_mask.bool()}
if key_padding_mask is not None
else None
)
mixer_kwargs['task'] = task
for layer in self.layers:
if self._grad_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
use_reentrant=False,
mixer_kwargs=mixer_kwargs,
)
else:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if subset_mask is not None:
hidden_states = hidden_states[subset_mask]
else:
batch, seqlen = hidden_states.shape[:2]
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
hidden_states, key_padding_mask
)
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch, "task": task}
if subset_mask is None:
for layer in self.layers:
if self._grad_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
use_reentrant=False,
mixer_kwargs=mixer_kwargs,
)
else:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
else:
for layer in self.layers[:-1]:
if self._grad_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
use_reentrant=False,
mixer_kwargs=mixer_kwargs,
)
else:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if key_padding_mask is not None:
subset_idx = torch.nonzero(
subset_mask[key_padding_mask], as_tuple=False
).flatten()
subset_seqlens = (subset_mask & key_padding_mask).sum(
dim=-1, dtype=torch.int32
)
subset_cu_seqlens = F.pad(
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32),
(1, 0),
)
else:
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
subset_cu_seqlens = F.pad(
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32),
(1, 0),
)
hidden_states_subset, hidden_states = index_first_axis_residual(
hidden_states, subset_idx
)
# It's ok to set max_seqlen_q to be much larger
mixer_kwargs = {
"x_kv": hidden_states,
"cu_seqlens": subset_cu_seqlens,
"max_seqlen": max_seqlen_in_batch,
"cu_seqlens_k": cu_seqlens,
"max_seqlen_k": max_seqlen_in_batch,
}
if self._grad_checkpointing:
torch.utils.checkpoint.checkpoint(
self.layers[-1],
hidden_states_subset,
use_reentrant=False,
mixer_kwargs=mixer_kwargs,
)
else:
hidden_states = self.layers[-1](
hidden_states_subset, mixer_kwargs=mixer_kwargs
)
return hidden_states
class XLMRobertaPooler(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states, pool=True, task=None):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
lora_kwargs = {'task': task} if task is not None else {}
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
pooled_output = self.dense(first_token_tensor, **lora_kwargs)
pooled_output = self.activation(pooled_output)
return pooled_output
class XLMRobertaPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
approximate = (
"tanh"
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
self.transform_act_fn = nn.GELU(approximate=approximate)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
if not self.fused_dropout_add_ln:
hidden_states = self.layer_norm(hidden_states)
else:
hidden_states = layer_norm_fn(
hidden_states,
self.layer_norm.weight,
self.layer_norm.bias,
eps=self.layer_norm.eps,
)
return hidden_states
class XLMRobertaLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.transform = XLMRobertaPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class XLMRobertaPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = XLMRobertaLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class XLMRobertaPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = XLMRobertaFlashConfig
base_model_prefix = "roberta"
supports_gradient_checkpointing = True
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, XLMRobertaEncoder):
module.gradient_checkpointing = value
@classmethod
def from_pretrained(
cls,
*args,
**kwargs,
):
if not 'torch_dtype' in kwargs:
kwargs['torch_dtype'] = 'auto'
return super().from_pretrained(*args, **kwargs)
class XLMRobertaModel(XLMRobertaPreTrainedModel):
def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True):
super().__init__(config)
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if config.vocab_size % self.pad_vocab_size_multiple != 0:
config.vocab_size += self.pad_vocab_size_multiple - (
config.vocab_size % self.pad_vocab_size_multiple
)
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
assert config.hidden_act in [
"gelu",
"gelu_new",
"gelu_fast",
"gelu_pytorch_tanh",
]
self.embeddings = XLMRobertaEmbeddings(
config.hidden_size,
config.vocab_size,
config.max_position_embeddings if config.position_embedding_type == 'absolute' else -1,
config.type_vocab_size,
padding_idx=config.pad_token_id,
)
self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.encoder = XLMRobertaEncoder(config)
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
@torch.inference_mode()
def encode(
self: 'XLMRobertaModel',
sentences: Union[str, List[str]],
batch_size: int = 32,
show_progress_bar: Optional[bool] = None,
output_value: str = 'sentence_embedding',
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: Optional[torch.device] = None,
normalize_embeddings: bool = False,
truncate_dim: Optional[int] = None,
task: Optional[str] = None,
**tokenizer_kwargs,
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
"""
Computes sentence embeddings
Args:
sentences(`str` or `List[str]`):
Sentence or sentences to be encoded
batch_size(`int`, *optional*, defaults to 32):
Batch size for the computation
show_progress_bar(`bool`, *optional*, defaults to None):
Show a progress bar when encoding sentences.
If set to None, progress bar is only shown when
`logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
output_value(`str`, *optional*, defaults to 'sentence_embedding'):
Default sentence_embedding, to get sentence embeddings.
Can be set to token_embeddings to get wordpiece token embeddings.
Set to None, to get all output values
convert_to_numpy(`bool`, *optional*, defaults to True):
If true, the output is a list of numpy vectors.
Else, it is a list of pytorch tensors.
convert_to_tensor(`bool`, *optional*, defaults to False):
If true, you get one large tensor as return.
Overwrites any setting from convert_to_numpy
device(`torch.device`, *optional*, defaults to None):
Which torch.device to use for the computation
normalize_embeddings(`bool`, *optional*, defaults to False):
If set to true, returned vectors will have length 1. In that case, the
faster dot-product (util.dot_score) instead of cosine similarity can
be used.
truncate_dim(`int`, *optional*, defaults to None):
The dimension to truncate sentence embeddings to. `None` does no truncation.
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
Keyword arguments for the tokenizer
Returns:
By default, a list of tensors is returned.
If convert_to_tensor, a stacked tensor is returned.
If convert_to_numpy, a numpy matrix is returned.
"""
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.name_or_path, trust_remote_code=True
)
is_training = self.training
self.eval()
if show_progress_bar is None:
show_progress_bar = (
logger.getEffectiveLevel() == logging.INFO
or logger.getEffectiveLevel() == logging.DEBUG
)
if convert_to_tensor:
convert_to_numpy = False
if output_value != 'sentence_embedding':
convert_to_tensor = False
convert_to_numpy = False
input_was_string = False
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
sentences = [sentences]
input_was_string = True
if device is not None:
self.to(device)
permutation = np.argsort([-len(i) for i in sentences])
inverse_permutation = np.argsort(permutation)
sentences = [sentences[idx] for idx in permutation]
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get(
'max_length', self.tokenizer.init_kwargs.get('model_max_length', 8192)
)
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
all_embeddings = []
if trange is not None:
range_iter = trange(
0,
len(sentences),
batch_size,
desc="Encoding",
disable=not show_progress_bar,
)
else:
range_iter = range(0, len(sentences), batch_size)
lora_kwargs = {'task': task} if task is not None else {}
for i in range_iter:
encoded_input = self.tokenizer(
sentences[i : i + batch_size],
return_tensors='pt',
**tokenizer_kwargs,
).to(self.device)
token_embs = self.forward(**encoded_input, **lora_kwargs)[0]
# Accumulate in fp32 to avoid overflow
token_embs = token_embs.float()
if output_value == 'token_embeddings':
raise NotImplementedError
elif output_value is None:
raise NotImplementedError
else:
if self.config.emb_pooler == 'cls':
embeddings = self.cls_pooling(
token_embs, encoded_input['attention_mask']
)
else:
embeddings = self.mean_pooling(
token_embs, encoded_input['attention_mask']
)
if normalize_embeddings:
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
if convert_to_numpy:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
truncate_dim = truncate_dim or self.config.truncate_dim
if truncate_dim:
all_embeddings = self.truncate_embeddings(all_embeddings, truncate_dim)
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
if input_was_string:
all_embeddings = all_embeddings[0]
self.train(is_training)
return all_embeddings
def truncate_embeddings(self, embeddings, truncate_dim):
if not self.config.matryoshka_dimensions:
logger.warning(
'Matryoshka embeddings are not supported, so dimension truncation will not be performed.'
)
return embeddings
elif truncate_dim in self.config.matryoshka_dimensions:
return [tensor[:truncate_dim] for tensor in embeddings]
else:
raise ValueError(f'The provided `truncate_dim` value of {truncate_dim} is not supported. '
f'Supported dimensions are {self.config.matryoshka_dimensions}.')
def mean_pooling(
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
):
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
def cls_pooling(
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
):
return token_embeddings[:,0]
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
attention_mask=None,
masked_tokens_mask=None,
return_dict=None,
**kwargs,
):
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining),
we only want the output for the masked tokens. This means that we only compute the last
layer output for these tokens.
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
"""
task = kwargs.pop('task', None)
if kwargs:
for key, value in kwargs.items():
if value is not None:
logger.warning(
'Flash attention implementation does not support kwargs: %s',
key,
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
hidden_states = self.embeddings(
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, task=task
)
# TD [2022-12:18]: Don't need to force residual in fp32
# BERT puts embedding LayerNorm before embedding dropout.
if not self.fused_dropout_add_ln:
hidden_states = self.emb_ln(hidden_states)
else:
hidden_states = layer_norm_fn(
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps
)
hidden_states = self.emb_drop(hidden_states)
if masked_tokens_mask is not None:
batch_size, seqlen = input_ids.shape[:2]
# We also need the first column for the CLS token
first_col_mask = torch.zeros(
batch_size, seqlen, dtype=torch.bool, device=input_ids.device
)
first_col_mask[:, 0] = True
subset_mask = masked_tokens_mask | first_col_mask
else:
subset_mask = None
sequence_output = self.encoder(
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask, task=task
)
if masked_tokens_mask is None:
pooled_output = (
self.pooler(sequence_output, task=task) if self.pooler is not None else None
)
else:
# TD [2022-03-01]: the indexing here is very tricky.
if attention_mask is not None:
subset_idx = subset_mask[attention_mask]
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
sequence_output = sequence_output[
masked_tokens_mask[attention_mask][subset_idx]
]
else:
pool_input = sequence_output[first_col_mask[subset_mask]]
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
pooled_output = (
self.pooler(pool_input, pool=False, task=task) if self.pooler is not None else None
)
if not return_dict:
return sequence_output, pooled_output
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
)
class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
self.lm_head = XLMRobertaLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.roberta.embeddings.word_embeddings
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(prediction_scores.device)
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return (
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
)
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# class XLMRobertaForPreTraining(XLMRobertaPreTrainedModel):
# def __init__(self, config: XLMRobertaFlashConfig):
# super().__init__(config)
# # If dense_seq_output, we only need to pass the hidden states for the masked out tokens
# # (around 15%) to the classifier heads.
# self.dense_seq_output = getattr(config, "dense_seq_output", False)
# # If last_layer_subset, we only need the compute the last layer for a subset of tokens
# # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
# self.last_layer_subset = getattr(config, "last_layer_subset", False)
# if self.last_layer_subset:
# assert self.dense_seq_output, "last_layer_subset requires dense_seq_output"
# use_xentropy = getattr(config, "use_xentropy", False)
# if use_xentropy and CrossEntropyLoss is None:
# raise ImportError("xentropy_cuda is not installed")
# loss_cls = (
# nn.CrossEntropyLoss
# if not use_xentropy
# else partial(CrossEntropyLoss, inplace_backward=True)
# )
#
# self.xlm = XLMRobertaModel(config)
# self.cls = XLMRobertaPreTrainingHeads(config)
# self.mlm_loss = loss_cls(ignore_index=0)
# self.nsp_loss = loss_cls(ignore_index=-1)
#
# # Initialize weights and apply final processing
# self.apply(partial(_init_weights, initializer_range=config.initializer_range))
# self.tie_weights()
#
# def tie_weights(self):
# self.cls.predictions.decoder.weight = self.xlm.embeddings.word_embeddings.weight
#
# def forward(
# self,
# input_ids,
# position_ids=None,
# token_type_ids=None,
# attention_mask=None,
# labels=None,
# next_sentence_label=None,
# ):
# """
# If labels are provided, they must be 0 for masked out tokens (as specified in the attention
# mask).
# Outputs:
# if `labels` and `next_sentence_label` are not `None`:
# Outputs the total_loss which is the sum of the masked language modeling loss and the next
# sentence classification loss.
# if `labels` or `next_sentence_label` is `None`:
# Outputs a tuple comprising
# - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
# - the next sentence classification logits of shape [batch_size, 2].
#
# """
# masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
# outputs = self.xlm(
# input_ids,
# position_ids=position_ids,
# token_type_ids=token_type_ids,
# attention_mask=attention_mask.bool() if attention_mask is not None else None,
# masked_tokens_mask=masked_tokens_mask,
# )
# sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
# if self.dense_seq_output and labels is not None:
# masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
# if not self.last_layer_subset:
# sequence_output = index_first_axis(
# rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx
# )
# prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
#
# total_loss = None
# if labels is not None and next_sentence_label is not None:
# if (
# self.dense_seq_output and labels is not None
# ): # prediction_scores are already flattened
# masked_lm_loss = self.mlm_loss(
# prediction_scores, labels.flatten()[masked_token_idx]
# )
# else:
# masked_lm_loss = self.mlm_loss(
# rearrange(prediction_scores, "... v -> (...) v"),
# rearrange(labels, "... -> (...)"),
# )
# next_sentence_loss = self.nsp_loss(
# rearrange(seq_relationship_score, "... t -> (...) t"),
# rearrange(next_sentence_label, "... -> (...)"),
# )
# total_loss = masked_lm_loss.float() + next_sentence_loss.float()
#
# return BertForPreTrainingOutput(
# loss=total_loss,
# prediction_logits=prediction_scores,
# seq_relationship_logits=seq_relationship_score,
# )
def remap_state_dict(state_dict, config: PretrainedConfig):
"""
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
"""
# LayerNorm
def key_mapping_ln_gamma_beta(key):
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
return key
state_dict = OrderedDict(
(key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()
)
# Layers
def key_mapping_layers(key):
return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
key = re.sub(
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
r"bert.encoder.layers.\1.norm1.\2",
key,
)
key = re.sub(
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
r"bert.encoder.layers.\1.norm2.\2",
key,
)
key = re.sub(
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
r"cls.predictions.transform.layer_norm.\1",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
def key_mapping_mlp(key):
key = re.sub(
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
r"bert.encoder.layers.\1.mlp.fc1.\2",
key,
)
key = re.sub(
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
r"bert.encoder.layers.\1.mlp.fc2.\2",
key,
)
return key
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
last_layer_subset = getattr(config, "last_layer_subset", False)
for d in range(config.num_hidden_layers):
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
if not (last_layer_subset and d == config.num_hidden_layers - 1):
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
[Wq, Wk, Wv], dim=0
)
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat(
[bq, bk, bv], dim=0
)
else:
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat(
[Wk, Wv], dim=0
)
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat(
[bk, bv], dim=0
)
def key_mapping_attn(key):
return re.sub(
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
r"bert.encoder.layers.\1.mixer.out_proj.\2",
key,
)
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
def key_mapping_decoder_bias(key):
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
state_dict = OrderedDict(
(key_mapping_decoder_bias(k), v) for k, v in state_dict.items()
)
# Word embedding
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if pad_vocab_size_multiple > 1:
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
)
decoder_weight = state_dict["cls.predictions.decoder.weight"]
state_dict["cls.predictions.decoder.weight"] = F.pad(
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
)
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
# strongly negative (i.e. the decoder shouldn't predict those indices).
# TD [2022-05-09]: I don't think it affects the MLPerf training.
decoder_bias = state_dict["cls.predictions.decoder.bias"]
state_dict["cls.predictions.decoder.bias"] = F.pad(
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
)
return state_dict
def inv_remap_state_dict(state_dict, config: PretrainedConfig):
"""
Map the state_dict of a flash_attn model to be Huggingface BERT compatible.
This function is meant to be the inverse of remap_state_dict.
"""
# Word embedding
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if pad_vocab_size_multiple > 1:
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
decoder_weight = state_dict["cls.predictions.decoder.weight"]
decoder_bias = state_dict["cls.predictions.decoder.bias"]
# unpad embeddings
state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[
: config.orig_vocab_size, :
]
state_dict["cls.predictions.decoder.weight"] = decoder_weight[
: config.orig_vocab_size, :
]
state_dict["cls.predictions.decoder.bias"] = decoder_bias[
: config.orig_vocab_size
]
for d in range(config.num_hidden_layers):
last_layer_subset = getattr(config, "last_layer_subset", False)
if not last_layer_subset or d != (config.num_hidden_layers - 1):
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
state_dict[
f"bert.encoder.layers.{d}.attention.self.query.weight"
] = Wqkv_weights[: Wqkv_weights.shape[0] // 3, :]
state_dict[
f"bert.encoder.layers.{d}.attention.self.key.weight"
] = Wqkv_weights[
Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, :
]
state_dict[
f"bert.encoder.layers.{d}.attention.self.value.weight"
] = Wqkv_weights[2 * Wqkv_weights.shape[0] // 3 :, :]
state_dict[
f"bert.encoder.layers.{d}.attention.self.query.bias"
] = Wqkv_biases[: Wqkv_biases.shape[0] // 3]
state_dict[
f"bert.encoder.layers.{d}.attention.self.key.bias"
] = Wqkv_biases[Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3]
state_dict[
f"bert.encoder.layers.{d}.attention.self.value.bias"
] = Wqkv_biases[2 * Wqkv_biases.shape[0] // 3 :]
else:
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
state_dict[
f"bert.encoder.layers.{d}.attention.self.query.weight"
] = Wq_weight
state_dict[
f"bert.encoder.layers.{d}.attention.self.key.weight"
] = Wkv_weights[: Wkv_weights.shape[0] // 2, :]
state_dict[
f"bert.encoder.layers.{d}.attention.self.value.weight"
] = Wkv_weights[Wkv_weights.shape[0] // 2 :, :]
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
: Wkv_biases.shape[0] // 2
]
state_dict[
f"bert.encoder.layers.{d}.attention.self.value.bias"
] = Wkv_biases[Wkv_biases.shape[0] // 2 :]
def inv_key_mapping_ln(key):
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
key = re.sub(
r"bert.encoder.layers.(\d+).norm1.(weight|bias)",
r"bert.encoder.layers.\1.attention.output.LayerNorm.\2",
key,
)
key = re.sub(
r"bert.encoder.layers.(\d+).norm2.(weight|bias)",
r"bert.encoder.layers.\1.output.LayerNorm.\2",
key,
)
key = re.sub(
r"cls.predictions.transform.layer_norm.(weight|bias)",
r"cls.predictions.transform.LayerNorm.\1",
key,
)
return key
def inv_key_mapping_ln_gamma_beta(key):
key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key)
key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key)
return key
def inv_key_mapping_layers(key):
return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key)
def inv_key_mapping_mlp(key):
key = re.sub(
r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)",
r"bert.encoder.layer.\1.intermediate.dense.\2",
key,
)
key = re.sub(
r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)",
r"bert.encoder.layer.\1.output.dense.\2",
key,
)
return key
def inv_key_mapping_attn(key):
return re.sub(
r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)",
r"bert.encoder.layer.\1.attention.output.dense.\2",
key,
)
def inv_key_mapping_decoder_bias(key):
return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key)
state_dict = OrderedDict(
(inv_key_mapping_ln(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_layers(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_mlp(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_attn(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items()
)
return state_dict
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta
class XLMRobertaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout
if config.classifier_dropout is not None
else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = linear_cls(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
self.classifier = XLMRobertaClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|