File size: 17,743 Bytes
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
 
 
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
77af1c7
 
 
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
 
 
2e3ebcb
 
 
 
 
 
 
 
 
 
 
77af1c7
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
 
 
2e3ebcb
 
 
 
 
 
 
 
 
 
 
77af1c7
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
 
 
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
 
 
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
77af1c7
2e3ebcb
 
 
 
77af1c7
2e3ebcb
 
 
 
77af1c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/block.py
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48

# Copyright (c) 2024, Tri Dao.

from functools import partial
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

from .stochastic_depth import StochasticDepth
from .mha import MHA
from .mlp import Mlp

try:
    from flash_attn.ops.triton.layer_norm import layer_norm_fn, RMSNorm
except ImportError:
    layer_norm_fn, RMSNorm = None, None


class Block(nn.Module):
    def __init__(
        self,
        dim,
        mixer_cls=None,
        mlp_cls=None,
        norm_cls=nn.LayerNorm,
        dropout_cls=nn.Dropout,
        prenorm=True,
        resid_dropout1=0.0,
        resid_dropout2=0.0,
        drop_path1=0.0,
        drop_path2=0.0,
        fused_dropout_add_ln=False,
        return_residual=False,
        residual_in_fp32=False,
        sequence_parallel=False,
        mark_shared_params=False,
    ):
        """
        For prenorm=True, this Block has a slightly different structure compared to a regular
        prenorm Transformer block.
        The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add.
        [Ref: https://arxiv.org/abs/2002.04745]
        Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both
        the hidden_states (output of the MLP) and the residual.
        This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
        The residual needs to be provided (except for the very first block).

        For prenorm=False, this Block has the same structure as a regular postnorm Transformer
        block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN.

        return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
        This is for performance reason: for post-norm architecture, returning the input allows us
        to fuse the backward of nn.Linear with the residual connection.
        """
        super().__init__()
        self.prenorm = prenorm
        self.fused_dropout_add_ln = fused_dropout_add_ln
        self.return_residual = return_residual
        self.residual_in_fp32 = residual_in_fp32
        if self.residual_in_fp32:
            assert self.prenorm, "residual_in_fp32 is only compatible with prenorm=True"
        if mixer_cls is None:
            mixer_cls = partial(MHA, num_heads=dim // 64)
        if mlp_cls is None:
            mlp_cls = partial(Mlp, hidden_features=4 * dim)
        self.mixer = mixer_cls(dim)
        self.dropout1 = dropout_cls(resid_dropout1)
        self.drop_path1 = StochasticDepth(drop_path1, mode="row")
        self.norm1 = norm_cls(dim)
        self.mlp = mlp_cls(dim)
        if not isinstance(self.mlp, nn.Identity):
            self.dropout2 = dropout_cls(resid_dropout2)
            self.drop_path2 = StochasticDepth(drop_path2, mode="row")
            self.norm2 = norm_cls(dim)

        if self.fused_dropout_add_ln:
            assert layer_norm_fn is not None, "Triton is not installed"
            assert isinstance(self.norm1, (nn.LayerNorm, RMSNorm)) and isinstance(
                self.dropout1, nn.Dropout
            )

        # TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
        # then the input to each worker in the tensor parallel group will be different.
        # This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
        # For now this is not an issue because we always use sequence_parallel=True during training
        # and only use sequence_parallel=False during inference.

        # Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
        if sequence_parallel:
            for p in self.norm1.parameters():
                p._sequence_parallel = True
            if hasattr(self, "norm2"):
                for p in self.norm2.parameters():
                    p._sequence_parallel = True
        # Mark the norm parameters as "shared_params" so that we sync their values at init.
        if mark_shared_params:
            for p in self.norm1.parameters():
                p._shared_params = True
            if hasattr(self, "norm2"):
                for p in self.norm2.parameters():
                    p._shared_params = True

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return self.mixer.allocate_inference_cache(
            batch_size, max_seqlen, dtype=dtype, **kwargs
        )

    def forward(
        self,
        hidden_states: Tensor,
        residual: Optional[Tensor] = None,
        mixer_subset=None,
        mixer_kwargs=None,
    ):
        r"""Pass the input through the encoder layer.

        Args:
            hidden_states: the sequence to the encoder layer (required).
            residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
        """
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_path1(self.dropout1(hidden_states))
                residual = (dropped + residual) if residual is not None else dropped
                hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
                if self.residual_in_fp32:
                    residual = residual.to(torch.float32)
            else:
                if self.drop_path1.p == 0 or not self.training:
                    rowscale1 = None
                else:
                    rowscale1 = self.drop_path1(
                        torch.ones(
                            hidden_states.shape[:-1],
                            device=hidden_states.device,
                            dtype=hidden_states.dtype,
                        )
                    )
                hidden_states, residual = layer_norm_fn(
                    hidden_states,
                    self.norm1.weight,
                    self.norm1.bias,
                    residual=residual,
                    eps=self.norm1.eps,
                    dropout_p=self.dropout1.p if self.training else 0.0,
                    rowscale=rowscale1,
                    prenorm=True,
                    residual_in_fp32=self.residual_in_fp32,
                    is_rms_norm=isinstance(self.norm1, RMSNorm),
                )
            if mixer_kwargs is None:
                mixer_kwargs = {}
            if mixer_subset is not None:
                mixer_kwargs["mixer_subset"] = mixer_subset
            hidden_states = self.mixer(hidden_states, **mixer_kwargs)
            if mixer_subset is not None:
                residual = residual[:, mixer_subset]
            if not isinstance(self.mlp, nn.Identity):
                if not self.fused_dropout_add_ln:
                    dropped = self.drop_path2(self.dropout2(hidden_states))
                    residual = (dropped + residual) if residual is not None else dropped
                    hidden_states = self.norm2(
                        residual.to(dtype=self.norm2.weight.dtype)
                    )
                    if self.residual_in_fp32:
                        residual = residual.to(torch.float32)
                else:
                    if self.drop_path2.p == 0 or not self.training:
                        rowscale2 = None
                    else:
                        rowscale2 = self.drop_path2(
                            torch.ones(
                                hidden_states.shape[:-1],
                                device=hidden_states.device,
                                dtype=hidden_states.dtype,
                            )
                        )
                    hidden_states, residual = layer_norm_fn(
                        hidden_states,
                        self.norm2.weight,
                        self.norm2.bias,
                        residual=residual,
                        eps=self.norm2.eps,
                        dropout_p=self.dropout2.p if self.training else 0.0,
                        rowscale=rowscale2,
                        prenorm=True,
                        residual_in_fp32=self.residual_in_fp32,
                        is_rms_norm=isinstance(self.norm2, RMSNorm),
                    )
                hidden_states = self.mlp(hidden_states)
            return hidden_states, residual
        else:
            assert residual is None
            mixer_out = self.mixer(
                hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {})
            )
            if self.return_residual:  # mixer out is actually a pair here
                mixer_out, hidden_states = mixer_out
            if not self.fused_dropout_add_ln:
                hidden_states = self.norm1(
                    (self.drop_path1(self.dropout1(mixer_out)) + hidden_states).to(
                        dtype=self.norm1.weight.dtype
                    )
                )
            else:
                if self.drop_path1.p == 0 or not self.training:
                    rowscale1 = None
                else:
                    rowscale1 = self.drop_path1(
                        torch.ones(
                            mixer_out.shape[:-1],
                            device=mixer_out.device,
                            dtype=mixer_out.dtype,
                        )
                    )
                hidden_states = layer_norm_fn(
                    mixer_out,
                    self.norm1.weight,
                    self.norm1.bias,
                    residual=hidden_states,
                    eps=self.norm1.eps,
                    dropout_p=self.dropout1.p if self.training else 0.0,
                    rowscale=rowscale1,
                    prenorm=False,
                    is_rms_norm=isinstance(self.norm1, RMSNorm),
                )
            if not isinstance(self.mlp, nn.Identity):
                mlp_out = self.mlp(hidden_states)
                if self.return_residual:  # mlp out is actually a pair here
                    mlp_out, hidden_states = mlp_out
                if not self.fused_dropout_add_ln:
                    hidden_states = self.norm2(
                        (self.drop_path2(self.dropout2(mlp_out)) + hidden_states).to(
                            dtype=self.norm2.weight.dtype
                        )
                    )
                else:
                    if self.drop_path2.p == 0 or not self.training:
                        rowscale2 = None
                    else:
                        rowscale2 = self.drop_path2(
                            torch.ones(
                                mlp_out.shape[:-1],
                                device=mlp_out.device,
                                dtype=mlp_out.dtype,
                            )
                        )
                    hidden_states = layer_norm_fn(
                        mlp_out,
                        self.norm2.weight,
                        self.norm2.bias,
                        residual=hidden_states,
                        eps=self.norm2.eps,
                        dropout_p=self.dropout2.p if self.training else 0.0,
                        rowscale=rowscale2,
                        prenorm=False,
                        is_rms_norm=isinstance(self.norm2, RMSNorm),
                    )
            return hidden_states


class ParallelBlock(nn.Module):
    """The attention (mixer) and MLP blocks are done in parallel, similar to GPT-J, GPT-NeoX,
    and PaLM.
    """

    def __init__(
        self,
        dim,
        mixer_cls=None,
        mlp_cls=None,
        norm_cls=nn.LayerNorm,
        dropout_cls=nn.Dropout,
        resid_dropout1=0.0,
        resid_dropout2=0.0,
        tied_norm=False,
        fused_dropout_add_ln=False,
        residual_in_fp32=False,
        sequence_parallel=False,
        mark_shared_params=False,
    ):
        """
        This Block has a slightly different structure compared to a regular
        prenorm Transformer block.
        The standard block is: LN -> MHA / MLP -> Dropout -> Add.
        [Ref: https://arxiv.org/abs/2002.04745]
        Here we have: Dropout -> Add -> LN -> MHA / MLP, returning both
        the hidden_states (output1 of the MHA / MLP) and the residual.
        This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
        The residual needs to be provided (except for the very first block).
        """
        super().__init__()
        self.tied_norm = tied_norm
        self.fused_dropout_add_ln = fused_dropout_add_ln
        self.residual_in_fp32 = residual_in_fp32
        if mixer_cls is None:
            mixer_cls = partial(MHA, num_heads=dim // 64)
        if mlp_cls is None:
            mlp_cls = partial(Mlp, hidden_features=4 * dim)
        self.mixer = mixer_cls(dim)
        self.dropout1 = dropout_cls(resid_dropout1)
        self.norm1 = norm_cls(dim)
        self.mlp = mlp_cls(dim)
        self.dropout2 = dropout_cls(resid_dropout2)
        if not self.tied_norm:
            self.norm2 = norm_cls(dim)

        if self.fused_dropout_add_ln:
            assert layer_norm_fn is not None, "Triton is not installed"
            assert isinstance(self.norm1, (nn.LayerNorm, RMSNorm)) and isinstance(
                self.dropout1, nn.Dropout
            )

        # TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
        # then the input to each worker in the tensor parallel group will be different.
        # This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
        # For now this is not an issue because we always use sequence_parallel=True during training
        # and only use sequence_parallel=False during inference.

        # Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
        if sequence_parallel:
            for p in self.norm1.parameters():
                p._sequence_parallel = True
            if hasattr(self, "norm2"):
                for p in self.norm2.parameters():
                    p._sequence_parallel = True
        # Mark the norm parameters as "shared_params" so that we sync their values at init.
        if mark_shared_params:
            for p in self.norm1.parameters():
                p._shared_params = True
            if hasattr(self, "norm2"):
                for p in self.norm2.parameters():
                    p._shared_params = True

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return self.mixer.allocate_inference_cache(
            batch_size, max_seqlen, dtype=dtype, **kwargs
        )

    def forward(
        self,
        hidden_states1: Tensor,
        hidden_states2: Optional[Tensor] = None,
        residual: Optional[Tensor] = None,
        mixer_kwargs=None,
    ):
        r"""Pass the input through the encoder layer.

        Args:
            hidden_states1: the output of the previous attention (mixer) or embedding layer.
            hidden_states2: the output of the previous MLP layer (if None, will use hidden_states1).
            residual.
        """
        # TODO: Ideally we should only do the allgather / allreduce once for
        # the Linear to MLP & Attention
        if not self.fused_dropout_add_ln:
            dropped1 = self.dropout1(hidden_states1)
            # For the very 1st block, we only want 1 dropout, not two different dropouts
            if hidden_states2 is not None:
                dropped2 = self.dropout2(hidden_states2)
                residual = (
                    (residual + dropped1 + dropped2)
                    if residual is not None
                    else dropped1 + dropped2
                )
            else:
                residual = (residual + dropped1) if residual is not None else dropped1
            hidden_states1 = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
            hidden_states2 = (
                self.norm2(residual.to(dtype=self.norm2.weight.dtype))
                if not self.tied_norm
                else hidden_states1
            )
            if self.residual_in_fp32:
                residual = residual.to(torch.float32)
        else:
            weight2, bias2 = (
                (self.norm2.weight, self.norm2.bias)
                if not self.tied_norm
                else (None, None)
            )
            hidden_states1, *rest, residual = layer_norm_fn(
                hidden_states1,
                self.norm1.weight,
                self.norm1.bias,
                residual=residual,
                x1=hidden_states2,
                weight1=weight2,
                bias1=bias2,
                eps=self.norm1.eps,
                dropout_p=self.dropout1.p if self.training else 0.0,
                prenorm=True,
                residual_in_fp32=self.residual_in_fp32,
                is_rms_norm=isinstance(self.norm1, RMSNorm),
            )
            if self.tied_norm:
                hidden_states2 = hidden_states1
            else:
                (hidden_states2,) = rest
        if mixer_kwargs is None:
            mixer_kwargs = {}
        hidden_states1 = self.mixer(hidden_states1, **mixer_kwargs)
        hidden_states2 = self.mlp(hidden_states2)
        return hidden_states1, hidden_states2, residual