|
import re |
|
from collections import OrderedDict |
|
from transformers import PretrainedConfig |
|
from transformers import XLMRobertaForMaskedLM, XLMRobertaForSequenceClassification |
|
|
|
from .configuration_xlm_roberta import XLMRobertaFlashConfig as BertConfig |
|
from .modeling_xlm_roberta import XLMRobertaForMaskedLM as FlashXLMRobertaForMaskedLM |
|
from .modeling_xlm_roberta import XLMRobertaForSequenceClassification as FlashXLMRobertaForSequenceClassification |
|
import torch |
|
|
|
import click |
|
|
|
|
|
|
|
|
|
def remap_state_dict(state_dict, config: PretrainedConfig): |
|
""" |
|
Map the state_dict of a Huggingface BERT model to be flash_attn compatible. |
|
""" |
|
|
|
|
|
def key_mapping_ln_gamma_beta(key): |
|
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) |
|
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) |
|
return key |
|
|
|
state_dict = OrderedDict( |
|
(key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items() |
|
) |
|
|
|
|
|
def key_mapping_layers(key): |
|
return re.sub(r"^roberta.encoder.layer.", "roberta.encoder.layers.", key) |
|
|
|
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
def key_mapping_ln(key): |
|
key = re.sub(r"^roberta.embeddings.LayerNorm.", "roberta.emb_ln.", key) |
|
key = re.sub( |
|
r"^roberta.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)", |
|
r"roberta.encoder.layers.\1.norm1.\2", |
|
key, |
|
) |
|
key = re.sub( |
|
r"^roberta.encoder.layers.(\d+).output.LayerNorm.(weight|bias)", |
|
r"roberta.encoder.layers.\1.norm2.\2", |
|
key, |
|
) |
|
key = re.sub( |
|
r"^cls.predictions.transform.LayerNorm.(weight|bias)", |
|
r"cls.predictions.transform.layer_norm.\1", |
|
key, |
|
) |
|
return key |
|
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
def key_mapping_mlp(key): |
|
key = re.sub( |
|
r"^roberta.encoder.layers.(\d+).intermediate.dense.(weight|bias)", |
|
r"roberta.encoder.layers.\1.mlp.fc1.\2", |
|
key, |
|
) |
|
key = re.sub( |
|
r"^roberta.encoder.layers.(\d+).output.dense.(weight|bias)", |
|
r"roberta.encoder.layers.\1.mlp.fc2.\2", |
|
key, |
|
) |
|
return key |
|
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
last_layer_subset = getattr(config, "last_layer_subset", False) |
|
for d in range(config.num_hidden_layers): |
|
Wq = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.query.weight") |
|
Wk = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.key.weight") |
|
Wv = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.value.weight") |
|
bq = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.query.bias") |
|
bk = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.key.bias") |
|
bv = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.value.bias") |
|
if not (last_layer_subset and d == config.num_hidden_layers - 1): |
|
state_dict[f"roberta.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat( |
|
[Wq, Wk, Wv], dim=0 |
|
) |
|
state_dict[f"roberta.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat( |
|
[bq, bk, bv], dim=0 |
|
) |
|
else: |
|
state_dict[f"roberta.encoder.layers.{d}.mixer.Wq.weight"] = Wq |
|
state_dict[f"roberta.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat( |
|
[Wk, Wv], dim=0 |
|
) |
|
state_dict[f"roberta.encoder.layers.{d}.mixer.Wq.bias"] = bq |
|
state_dict[f"roberta.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat( |
|
[bk, bv], dim=0 |
|
) |
|
|
|
def key_mapping_attn(key): |
|
return re.sub( |
|
r"^roberta.encoder.layers.(\d+).attention.output.dense.(weight|bias)", |
|
r"roberta.encoder.layers.\1.mixer.out_proj.\2", |
|
key, |
|
) |
|
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) |
|
|
|
def key_mapping_decoder_bias(key): |
|
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key) |
|
|
|
state_dict = OrderedDict( |
|
(key_mapping_decoder_bias(k), v) for k, v in state_dict.items() |
|
) |
|
|
|
|
|
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) |
|
if pad_vocab_size_multiple > 1: |
|
word_embeddings = state_dict["roberta.embeddings.word_embeddings.weight"] |
|
state_dict["roberta.embeddings.word_embeddings.weight"] = F.pad( |
|
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) |
|
) |
|
decoder_weight = state_dict["cls.predictions.decoder.weight"] |
|
state_dict["cls.predictions.decoder.weight"] = F.pad( |
|
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) |
|
) |
|
|
|
|
|
|
|
decoder_bias = state_dict["cls.predictions.decoder.bias"] |
|
state_dict["cls.predictions.decoder.bias"] = F.pad( |
|
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 |
|
) |
|
|
|
return state_dict |
|
|
|
|
|
@click.command() |
|
@click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name') |
|
@click.option('--revision', default='main', help='revision') |
|
@click.option('--task', default='masked_lm', help='task') |
|
@click.option('--output', default='converted_roberta_weights.bin', help='model name') |
|
def main(model_name, revision, task, output): |
|
|
|
if task == 'masked_lm': |
|
roberta_model = XLMRobertaForMaskedLM.from_pretrained(model_name, revision=revision) |
|
elif task == 'sequence_classification': |
|
roberta_model = XLMRobertaForSequenceClassification.from_pretrained(model_name, revision=revision,num_labels=1) |
|
config = BertConfig.from_dict(roberta_model.config.to_dict()) |
|
state_dict = roberta_model.state_dict() |
|
new_state_dict = remap_state_dict(state_dict, config) |
|
|
|
if task == 'masked_lm': |
|
flash_model = FlashXLMRobertaForMaskedLM(config) |
|
elif task == 'sequence_classification': |
|
flash_model = FlashXLMRobertaForSequenceClassification(config) |
|
|
|
for k, v in flash_model.state_dict().items(): |
|
if k not in new_state_dict: |
|
print(f'Use old weights from {k}') |
|
new_state_dict[k] = v |
|
|
|
flash_model.load_state_dict(new_state_dict) |
|
|
|
torch.save(new_state_dict, output) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|