feat: update the readme
Browse files
README.md
CHANGED
@@ -1,3 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
Core implementation of Jina XLM-RoBERTa
|
2 |
|
3 |
This implementation is adapted from [XLM-Roberta](https://huggingface.co/docs/transformers/en/model_doc/xlm-roberta). In contrast to the original implementation, this model uses Rotary positional encodings and supports flash-attention 2.
|
@@ -9,4 +111,4 @@ to be added soon
|
|
9 |
|
10 |
### Converting weights
|
11 |
|
12 |
-
Weights from an [original XLMRoberta model](https://huggingface.co/FacebookAI/xlm-roberta-large) can be converted using the `convert_roberta_weights_to_flash.py` script in the model repository.
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- transformers
|
4 |
+
- xlm-roberta
|
5 |
+
library_name: transformers
|
6 |
+
license: cc-by-nc-4.0
|
7 |
+
language:
|
8 |
+
- multilingual
|
9 |
+
- af
|
10 |
+
- am
|
11 |
+
- ar
|
12 |
+
- as
|
13 |
+
- az
|
14 |
+
- be
|
15 |
+
- bg
|
16 |
+
- bn
|
17 |
+
- br
|
18 |
+
- bs
|
19 |
+
- ca
|
20 |
+
- cs
|
21 |
+
- cy
|
22 |
+
- da
|
23 |
+
- de
|
24 |
+
- el
|
25 |
+
- en
|
26 |
+
- eo
|
27 |
+
- es
|
28 |
+
- et
|
29 |
+
- eu
|
30 |
+
- fa
|
31 |
+
- fi
|
32 |
+
- fr
|
33 |
+
- fy
|
34 |
+
- ga
|
35 |
+
- gd
|
36 |
+
- gl
|
37 |
+
- gu
|
38 |
+
- ha
|
39 |
+
- he
|
40 |
+
- hi
|
41 |
+
- hr
|
42 |
+
- hu
|
43 |
+
- hy
|
44 |
+
- id
|
45 |
+
- is
|
46 |
+
- it
|
47 |
+
- ja
|
48 |
+
- jv
|
49 |
+
- ka
|
50 |
+
- kk
|
51 |
+
- km
|
52 |
+
- kn
|
53 |
+
- ko
|
54 |
+
- ku
|
55 |
+
- ky
|
56 |
+
- la
|
57 |
+
- lo
|
58 |
+
- lt
|
59 |
+
- lv
|
60 |
+
- mg
|
61 |
+
- mk
|
62 |
+
- ml
|
63 |
+
- mn
|
64 |
+
- mr
|
65 |
+
- ms
|
66 |
+
- my
|
67 |
+
- ne
|
68 |
+
- nl
|
69 |
+
- 'no'
|
70 |
+
- om
|
71 |
+
- or
|
72 |
+
- pa
|
73 |
+
- pl
|
74 |
+
- ps
|
75 |
+
- pt
|
76 |
+
- ro
|
77 |
+
- ru
|
78 |
+
- sa
|
79 |
+
- sd
|
80 |
+
- si
|
81 |
+
- sk
|
82 |
+
- sl
|
83 |
+
- so
|
84 |
+
- sq
|
85 |
+
- sr
|
86 |
+
- su
|
87 |
+
- sv
|
88 |
+
- sw
|
89 |
+
- ta
|
90 |
+
- te
|
91 |
+
- th
|
92 |
+
- tl
|
93 |
+
- tr
|
94 |
+
- ug
|
95 |
+
- uk
|
96 |
+
- ur
|
97 |
+
- uz
|
98 |
+
- vi
|
99 |
+
- xh
|
100 |
+
- yi
|
101 |
+
- zh
|
102 |
+
---
|
103 |
Core implementation of Jina XLM-RoBERTa
|
104 |
|
105 |
This implementation is adapted from [XLM-Roberta](https://huggingface.co/docs/transformers/en/model_doc/xlm-roberta). In contrast to the original implementation, this model uses Rotary positional encodings and supports flash-attention 2.
|
|
|
111 |
|
112 |
### Converting weights
|
113 |
|
114 |
+
Weights from an [original XLMRoberta model](https://huggingface.co/FacebookAI/xlm-roberta-large) can be converted using the `convert_roberta_weights_to_flash.py` script in the model repository.
|