jupyterjazz
commited on
Commit
•
e0ea168
1
Parent(s):
f9b3adb
refactor: lora
Browse filesSigned-off-by: jupyterjazz <saba.sturua@jina.ai>
- configuration_xlm_roberta.py +8 -2
- modeling_lora.py +79 -67
- modeling_xlm_roberta.py +25 -2
configuration_xlm_roberta.py
CHANGED
@@ -22,7 +22,10 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
22 |
position_embedding_type="absolute",
|
23 |
use_cache=True,
|
24 |
classifier_dropout=None,
|
25 |
-
|
|
|
|
|
|
|
26 |
load_trained_adapters=False,
|
27 |
use_flash_attn=True,
|
28 |
torch_dtype=None,
|
@@ -47,8 +50,11 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
47 |
self.position_embedding_type = position_embedding_type
|
48 |
self.use_cache = use_cache
|
49 |
self.classifier_dropout = classifier_dropout
|
50 |
-
self.num_loras = num_loras
|
51 |
self.load_trained_adapters = load_trained_adapters
|
|
|
|
|
|
|
|
|
52 |
self.use_flash_attn = use_flash_attn
|
53 |
self.emb_pooler = emb_pooler
|
54 |
if torch_dtype and hasattr(torch, torch_dtype) and type(getattr(torch, torch_dtype)) is torch.dtype:
|
|
|
22 |
position_embedding_type="absolute",
|
23 |
use_cache=True,
|
24 |
classifier_dropout=None,
|
25 |
+
lora_adaptations=None,
|
26 |
+
lora_rank=4,
|
27 |
+
lora_dropout_p=0.0,
|
28 |
+
lora_alpha=1,
|
29 |
load_trained_adapters=False,
|
30 |
use_flash_attn=True,
|
31 |
torch_dtype=None,
|
|
|
50 |
self.position_embedding_type = position_embedding_type
|
51 |
self.use_cache = use_cache
|
52 |
self.classifier_dropout = classifier_dropout
|
|
|
53 |
self.load_trained_adapters = load_trained_adapters
|
54 |
+
self.lora_adaptations = lora_adaptations
|
55 |
+
self.lora_rank = lora_rank
|
56 |
+
self.lora_dropout_p = lora_dropout_p
|
57 |
+
self.lora_alpha = lora_alpha
|
58 |
self.use_flash_attn = use_flash_attn
|
59 |
self.emb_pooler = emb_pooler
|
60 |
if torch_dtype and hasattr(torch, torch_dtype) and type(getattr(torch, torch_dtype)) is torch.dtype:
|
modeling_lora.py
CHANGED
@@ -9,14 +9,18 @@ from torch import nn
|
|
9 |
from torch.nn import Parameter
|
10 |
from transformers import PretrainedConfig
|
11 |
|
12 |
-
from .modeling_xlm_roberta import
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def initialized_weights(
|
16 |
-
shape: Tuple[int],
|
17 |
) -> torch.Tensor:
|
18 |
weight_data = []
|
19 |
-
for _ in range(
|
20 |
new_adaption = torch.zeros(shape)
|
21 |
if init == "kaiming":
|
22 |
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
|
@@ -45,15 +49,16 @@ class LoRAParametrization(nn.Module):
|
|
45 |
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
46 |
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
47 |
"""
|
|
|
48 |
def __init__(
|
49 |
self,
|
50 |
fan_in: int,
|
51 |
fan_out: int,
|
52 |
layer_type: str = "linear",
|
53 |
-
|
54 |
rank: int = 4,
|
55 |
-
|
56 |
-
|
57 |
):
|
58 |
super().__init__()
|
59 |
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
|
@@ -63,25 +68,23 @@ class LoRAParametrization(nn.Module):
|
|
63 |
|
64 |
if layer_type == "linear":
|
65 |
self.lora_A = nn.Parameter(
|
66 |
-
initialized_weights((rank, fan_in),
|
67 |
)
|
68 |
-
self.lora_B = nn.Parameter(torch.zeros((
|
69 |
elif layer_type == "embedding":
|
70 |
-
self.lora_A = nn.Parameter(torch.zeros((
|
71 |
self.lora_B = nn.Parameter(
|
72 |
initialized_weights(
|
73 |
-
(rank, fan_out),
|
74 |
)
|
75 |
)
|
76 |
else:
|
77 |
raise NotImplementedError
|
78 |
|
79 |
-
self.lora_alpha, self.rank =
|
80 |
-
self.scaling =
|
81 |
-
self.lora_dropout = (
|
82 |
-
|
83 |
-
)
|
84 |
-
self.dropout_fn = self._dropout if lora_dropout_p > 0 else lambda x: x
|
85 |
self.register_buffer(
|
86 |
"lora_dropout_mask",
|
87 |
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
|
@@ -128,42 +131,52 @@ class LoRAParametrization(nn.Module):
|
|
128 |
def from_linear(
|
129 |
cls,
|
130 |
layer: nn.Module,
|
131 |
-
|
132 |
-
rank: int
|
133 |
-
|
134 |
-
|
135 |
):
|
136 |
assert isinstance(layer, nn.Linear)
|
137 |
fan_out, fan_in = layer.weight.shape
|
138 |
return cls(
|
139 |
fan_in,
|
140 |
fan_out,
|
141 |
-
|
142 |
layer_type="linear",
|
143 |
rank=rank,
|
144 |
-
|
145 |
-
|
146 |
)
|
147 |
|
148 |
@classmethod
|
149 |
def from_embedding(
|
150 |
-
cls,
|
|
|
|
|
|
|
|
|
|
|
151 |
):
|
152 |
assert isinstance(layer, nn.Embedding)
|
153 |
fan_in, fan_out = layer.weight.shape
|
154 |
return cls(
|
155 |
fan_in,
|
156 |
fan_out,
|
157 |
-
|
158 |
layer_type="embedding",
|
159 |
rank=rank,
|
160 |
-
|
161 |
-
|
162 |
)
|
163 |
|
164 |
@classmethod
|
165 |
def add_to_layer(
|
166 |
-
cls,
|
|
|
|
|
|
|
|
|
|
|
167 |
):
|
168 |
if isinstance(layer, nn.Linear):
|
169 |
parametrize.register_parametrization(
|
@@ -171,10 +184,10 @@ class LoRAParametrization(nn.Module):
|
|
171 |
"weight",
|
172 |
cls.from_linear(
|
173 |
layer,
|
174 |
-
|
175 |
rank=rank,
|
176 |
-
|
177 |
-
|
178 |
),
|
179 |
)
|
180 |
elif isinstance(layer, nn.Embedding):
|
@@ -183,10 +196,10 @@ class LoRAParametrization(nn.Module):
|
|
183 |
"weight",
|
184 |
cls.from_embedding(
|
185 |
layer,
|
186 |
-
|
187 |
rank=rank,
|
188 |
-
|
189 |
-
|
190 |
),
|
191 |
)
|
192 |
|
@@ -195,15 +208,14 @@ class LoRAParametrization(nn.Module):
|
|
195 |
if isinstance(layer, LoRAParametrization):
|
196 |
layer.current_task = task_idx
|
197 |
|
198 |
-
@staticmethod
|
199 |
-
def merge_lora_into_layer(layer: nn.Module):
|
200 |
-
if hasattr(layer, "parametrizations"):
|
201 |
-
for attr_name in layer.parametrizations.keys():
|
202 |
-
parametrize.remove_parametrizations(layer, attr_name, leave_parametrized=True)
|
203 |
-
|
204 |
|
205 |
class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
206 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
207 |
super().__init__(config)
|
208 |
|
209 |
if roberta is None:
|
@@ -211,10 +223,17 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
211 |
else:
|
212 |
self.roberta = roberta
|
213 |
|
214 |
-
self.
|
215 |
-
self.
|
216 |
-
self.
|
|
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
self.main_params_trainable = False
|
219 |
self._task_idx = None
|
220 |
# By default, we select the first LoRA
|
@@ -237,13 +256,6 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
237 |
if "lora" not in name:
|
238 |
param.requires_grad_(val)
|
239 |
|
240 |
-
def merge_lora(self):
|
241 |
-
"""Merges currently selected LoRA into main weights."""
|
242 |
-
if self._is_merged:
|
243 |
-
raise Exception('LoRA has already been merged, cannot merge again')
|
244 |
-
self._is_merged = True
|
245 |
-
self.apply(LoRAParametrization.merge_lora_into_layer)
|
246 |
-
|
247 |
@classmethod
|
248 |
def from_pretrained(
|
249 |
cls,
|
@@ -259,31 +271,33 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
259 |
use_safetensors: bool = None,
|
260 |
**kwargs,
|
261 |
):
|
262 |
-
config = XLMRobertaFlashConfig.from_pretrained(
|
|
|
|
|
263 |
if config.load_trained_adapters:
|
264 |
return super().from_pretrained(
|
265 |
-
pretrained_model_name_or_path,
|
266 |
-
*model_args,
|
267 |
-
**kwargs
|
268 |
)
|
269 |
else:
|
270 |
-
roberta = XLMRobertaModel.from_pretrained(
|
|
|
|
|
271 |
return cls(config, roberta=roberta)
|
272 |
|
273 |
-
def _register_lora(self,
|
274 |
self.apply(
|
275 |
partial(
|
276 |
LoRAParametrization.add_to_layer,
|
277 |
-
|
278 |
rank=rank,
|
279 |
-
|
280 |
-
|
281 |
)
|
282 |
)
|
283 |
|
284 |
@property
|
285 |
def current_task(self):
|
286 |
-
"""
|
287 |
:return: Integer or None (when LoRA is disabled)
|
288 |
"""
|
289 |
return self._task_idx
|
@@ -296,9 +310,7 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
296 |
:param task_idx: Which LoRA to use
|
297 |
:return:
|
298 |
"""
|
299 |
-
|
300 |
-
raise Exception('LoRA has been merged, cannot select new task')
|
301 |
-
assert task_idx is None or 0 <= task_idx < self._num_adaptions
|
302 |
if self._task_idx != task_idx:
|
303 |
# In this case, we need to update the LoRAs everywhere
|
304 |
self._task_idx = task_idx
|
@@ -306,9 +318,9 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
306 |
partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx)
|
307 |
)
|
308 |
|
309 |
-
def forward(self, *args,
|
310 |
-
if
|
311 |
-
self.current_task =
|
312 |
return self.roberta(*args, **kwargs)
|
313 |
|
314 |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
|
|
9 |
from torch.nn import Parameter
|
10 |
from transformers import PretrainedConfig
|
11 |
|
12 |
+
from .modeling_xlm_roberta import (
|
13 |
+
XLMRobertaFlashConfig,
|
14 |
+
XLMRobertaModel,
|
15 |
+
XLMRobertaPreTrainedModel,
|
16 |
+
)
|
17 |
|
18 |
|
19 |
def initialized_weights(
|
20 |
+
shape: Tuple[int], num_adaptations: int, init: str = "kaiming"
|
21 |
) -> torch.Tensor:
|
22 |
weight_data = []
|
23 |
+
for _ in range(num_adaptations):
|
24 |
new_adaption = torch.zeros(shape)
|
25 |
if init == "kaiming":
|
26 |
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
|
|
|
49 |
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
50 |
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
51 |
"""
|
52 |
+
|
53 |
def __init__(
|
54 |
self,
|
55 |
fan_in: int,
|
56 |
fan_out: int,
|
57 |
layer_type: str = "linear",
|
58 |
+
num_adaptations: int = 1,
|
59 |
rank: int = 4,
|
60 |
+
dropout_p: float = 0.0,
|
61 |
+
alpha: float = 1,
|
62 |
):
|
63 |
super().__init__()
|
64 |
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
|
|
|
68 |
|
69 |
if layer_type == "linear":
|
70 |
self.lora_A = nn.Parameter(
|
71 |
+
initialized_weights((rank, fan_in), num_adaptations, init="kaiming")
|
72 |
)
|
73 |
+
self.lora_B = nn.Parameter(torch.zeros((num_adaptations, fan_out, rank)))
|
74 |
elif layer_type == "embedding":
|
75 |
+
self.lora_A = nn.Parameter(torch.zeros((num_adaptations, fan_in, rank)))
|
76 |
self.lora_B = nn.Parameter(
|
77 |
initialized_weights(
|
78 |
+
(rank, fan_out), num_adaptations=num_adaptations, init="normal"
|
79 |
)
|
80 |
)
|
81 |
else:
|
82 |
raise NotImplementedError
|
83 |
|
84 |
+
self.lora_alpha, self.rank = alpha, rank
|
85 |
+
self.scaling = alpha / rank
|
86 |
+
self.lora_dropout = nn.Dropout(p=dropout_p) if dropout_p > 0 else lambda x: x
|
87 |
+
self.dropout_fn = self._dropout if dropout_p > 0 else lambda x: x
|
|
|
|
|
88 |
self.register_buffer(
|
89 |
"lora_dropout_mask",
|
90 |
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
|
|
|
131 |
def from_linear(
|
132 |
cls,
|
133 |
layer: nn.Module,
|
134 |
+
num_adaptations: int,
|
135 |
+
rank: int,
|
136 |
+
dropout_p: float,
|
137 |
+
alpha: float,
|
138 |
):
|
139 |
assert isinstance(layer, nn.Linear)
|
140 |
fan_out, fan_in = layer.weight.shape
|
141 |
return cls(
|
142 |
fan_in,
|
143 |
fan_out,
|
144 |
+
num_adaptations=num_adaptations,
|
145 |
layer_type="linear",
|
146 |
rank=rank,
|
147 |
+
dropout_p=dropout_p,
|
148 |
+
alpha=alpha,
|
149 |
)
|
150 |
|
151 |
@classmethod
|
152 |
def from_embedding(
|
153 |
+
cls,
|
154 |
+
layer: nn.Module,
|
155 |
+
num_adaptations: int,
|
156 |
+
rank: int,
|
157 |
+
dropout_p: float,
|
158 |
+
alpha: float,
|
159 |
):
|
160 |
assert isinstance(layer, nn.Embedding)
|
161 |
fan_in, fan_out = layer.weight.shape
|
162 |
return cls(
|
163 |
fan_in,
|
164 |
fan_out,
|
165 |
+
num_adaptations=num_adaptations,
|
166 |
layer_type="embedding",
|
167 |
rank=rank,
|
168 |
+
dropout_p=dropout_p,
|
169 |
+
alpha=alpha,
|
170 |
)
|
171 |
|
172 |
@classmethod
|
173 |
def add_to_layer(
|
174 |
+
cls,
|
175 |
+
layer: nn.Module,
|
176 |
+
num_adaptations: int,
|
177 |
+
rank: int,
|
178 |
+
dropout_p: float,
|
179 |
+
alpha: float,
|
180 |
):
|
181 |
if isinstance(layer, nn.Linear):
|
182 |
parametrize.register_parametrization(
|
|
|
184 |
"weight",
|
185 |
cls.from_linear(
|
186 |
layer,
|
187 |
+
num_adaptations=num_adaptations,
|
188 |
rank=rank,
|
189 |
+
dropout_p=dropout_p,
|
190 |
+
alpha=alpha,
|
191 |
),
|
192 |
)
|
193 |
elif isinstance(layer, nn.Embedding):
|
|
|
196 |
"weight",
|
197 |
cls.from_embedding(
|
198 |
layer,
|
199 |
+
num_adaptations=num_adaptations,
|
200 |
rank=rank,
|
201 |
+
dropout_p=dropout_p,
|
202 |
+
alpha=alpha,
|
203 |
),
|
204 |
)
|
205 |
|
|
|
208 |
if isinstance(layer, LoRAParametrization):
|
209 |
layer.current_task = task_idx
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
213 |
+
def __init__(
|
214 |
+
self,
|
215 |
+
config: XLMRobertaFlashConfig,
|
216 |
+
roberta: Optional[XLMRobertaModel] = None,
|
217 |
+
add_pooling_layer=True,
|
218 |
+
):
|
219 |
super().__init__(config)
|
220 |
|
221 |
if roberta is None:
|
|
|
223 |
else:
|
224 |
self.roberta = roberta
|
225 |
|
226 |
+
self._num_adaptations = len(config.lora_adaptations)
|
227 |
+
self._rank = config.lora_rank
|
228 |
+
self._dropout_p = config.lora_dropout_p
|
229 |
+
self._alpha = config.lora_alpha
|
230 |
|
231 |
+
self._register_lora(
|
232 |
+
num_adaptations=self._num_adaptations,
|
233 |
+
rank=self._rank,
|
234 |
+
dropout_p=self._dropout_p,
|
235 |
+
alpha=self._alpha,
|
236 |
+
)
|
237 |
self.main_params_trainable = False
|
238 |
self._task_idx = None
|
239 |
# By default, we select the first LoRA
|
|
|
256 |
if "lora" not in name:
|
257 |
param.requires_grad_(val)
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
@classmethod
|
260 |
def from_pretrained(
|
261 |
cls,
|
|
|
271 |
use_safetensors: bool = None,
|
272 |
**kwargs,
|
273 |
):
|
274 |
+
config = XLMRobertaFlashConfig.from_pretrained(
|
275 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
276 |
+
)
|
277 |
if config.load_trained_adapters:
|
278 |
return super().from_pretrained(
|
279 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
|
|
|
|
280 |
)
|
281 |
else:
|
282 |
+
roberta = XLMRobertaModel.from_pretrained(
|
283 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
284 |
+
)
|
285 |
return cls(config, roberta=roberta)
|
286 |
|
287 |
+
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
|
288 |
self.apply(
|
289 |
partial(
|
290 |
LoRAParametrization.add_to_layer,
|
291 |
+
num_adaptations=num_adaptations,
|
292 |
rank=rank,
|
293 |
+
dropout_p=dropout_p,
|
294 |
+
alpha=alpha,
|
295 |
)
|
296 |
)
|
297 |
|
298 |
@property
|
299 |
def current_task(self):
|
300 |
+
"""Which LoRA is currently selected
|
301 |
:return: Integer or None (when LoRA is disabled)
|
302 |
"""
|
303 |
return self._task_idx
|
|
|
310 |
:param task_idx: Which LoRA to use
|
311 |
:return:
|
312 |
"""
|
313 |
+
assert task_idx is None or 0 <= task_idx < self._num_adaptations
|
|
|
|
|
314 |
if self._task_idx != task_idx:
|
315 |
# In this case, we need to update the LoRAs everywhere
|
316 |
self._task_idx = task_idx
|
|
|
318 |
partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx)
|
319 |
)
|
320 |
|
321 |
+
def forward(self, *args, lora_adaptation: Union[None, int] = -1, **kwargs):
|
322 |
+
if lora_adaptation is None or lora_adaptation >= 0:
|
323 |
+
self.current_task = lora_adaptation
|
324 |
return self.roberta(*args, **kwargs)
|
325 |
|
326 |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
modeling_xlm_roberta.py
CHANGED
@@ -452,6 +452,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
452 |
convert_to_tensor: bool = False,
|
453 |
device: Optional[torch.device] = None,
|
454 |
normalize_embeddings: bool = False,
|
|
|
455 |
**tokenizer_kwargs,
|
456 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
457 |
"""
|
@@ -481,6 +482,12 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
481 |
If set to true, returned vectors will have length 1. In that case, the
|
482 |
faster dot-product (util.dot_score) instead of cosine similarity can
|
483 |
be used.
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
485 |
Keyword arguments for the tokenizer
|
486 |
Returns:
|
@@ -518,6 +525,22 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
518 |
if device is not None:
|
519 |
self.to(device)
|
520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
permutation = np.argsort([-len(i) for i in sentences])
|
522 |
inverse_permutation = np.argsort(permutation)
|
523 |
sentences = [sentences[idx] for idx in permutation]
|
@@ -547,7 +570,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
547 |
return_tensors='pt',
|
548 |
**tokenizer_kwargs,
|
549 |
).to(self.device)
|
550 |
-
token_embs = self.forward(**encoded_input)[0]
|
551 |
|
552 |
# Accumulate in fp32 to avoid overflow
|
553 |
token_embs = token_embs.float()
|
@@ -1253,4 +1276,4 @@ class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
|
1253 |
logits=logits,
|
1254 |
hidden_states=outputs.hidden_states,
|
1255 |
attentions=outputs.attentions,
|
1256 |
-
)
|
|
|
452 |
convert_to_tensor: bool = False,
|
453 |
device: Optional[torch.device] = None,
|
454 |
normalize_embeddings: bool = False,
|
455 |
+
task: Optional[str] = None,
|
456 |
**tokenizer_kwargs,
|
457 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
458 |
"""
|
|
|
482 |
If set to true, returned vectors will have length 1. In that case, the
|
483 |
faster dot-product (util.dot_score) instead of cosine similarity can
|
484 |
be used.
|
485 |
+
task(`str`, *optional*, defaults to None):
|
486 |
+
Specifies the task for which the encoding is intended. This
|
487 |
+
controls the use of specialized LoRA adapters that are tuned for specific tasks.
|
488 |
+
If provided, the corresponding LoRA adapter is enabled, enhancing the model's
|
489 |
+
performance for that task. If `None` or not provided, LoRA is disabled, and the
|
490 |
+
model uses its original, general-purpose weights.
|
491 |
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
492 |
Keyword arguments for the tokenizer
|
493 |
Returns:
|
|
|
525 |
if device is not None:
|
526 |
self.to(device)
|
527 |
|
528 |
+
lora_adapter_num = None
|
529 |
+
if self.config.lora_adaptations:
|
530 |
+
if task:
|
531 |
+
if task in self.config.lora_adaptations:
|
532 |
+
lora_adapter_num = self.config.lora_adaptations.index(task)
|
533 |
+
else:
|
534 |
+
raise ValueError(
|
535 |
+
f"Unsupported task '{task}'. "
|
536 |
+
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}.")
|
537 |
+
else:
|
538 |
+
logger.warning(
|
539 |
+
f"Task-specific embeddings are disabled. To enable, specify the `task` "
|
540 |
+
f"argument with one of the supported tasks: {', '.join(self.config.lora_adaptations)}"
|
541 |
+
)
|
542 |
+
|
543 |
+
|
544 |
permutation = np.argsort([-len(i) for i in sentences])
|
545 |
inverse_permutation = np.argsort(permutation)
|
546 |
sentences = [sentences[idx] for idx in permutation]
|
|
|
570 |
return_tensors='pt',
|
571 |
**tokenizer_kwargs,
|
572 |
).to(self.device)
|
573 |
+
token_embs = self.forward(**encoded_input, lora_adaptation=lora_adapter_num)[0]
|
574 |
|
575 |
# Accumulate in fp32 to avoid overflow
|
576 |
token_embs = token_embs.float()
|
|
|
1276 |
logits=logits,
|
1277 |
hidden_states=outputs.hidden_states,
|
1278 |
attentions=outputs.attentions,
|
1279 |
+
)
|