jupyterjazz
commited on
Commit
•
f2e0e62
1
Parent(s):
ab85772
feat: support rope
Browse filesSigned-off-by: jupyterjazz <saba.sturua@jina.ai>
- mha.py +332 -44
- modeling_xlm_roberta.py +2 -2
- rotary.py +570 -0
mha.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py
|
2 |
-
# Commit id: 6bbc532388e61185a92e2a563126739967b4c8c5
|
3 |
-
|
4 |
# Copyright (c) 2023, Tri Dao.
|
5 |
|
6 |
import math
|
@@ -10,6 +7,8 @@ import torch
|
|
10 |
import torch.nn as nn
|
11 |
from einops import rearrange, repeat
|
12 |
|
|
|
|
|
13 |
try:
|
14 |
from flash_attn import (
|
15 |
flash_attn_kvpacked_func,
|
@@ -28,10 +27,7 @@ try:
|
|
28 |
except ImportError:
|
29 |
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
|
30 |
|
31 |
-
|
32 |
-
from flash_attn.layers.rotary import RotaryEmbedding
|
33 |
-
except ImportError:
|
34 |
-
RotaryEmbedding = None
|
35 |
|
36 |
|
37 |
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
|
@@ -62,15 +58,7 @@ class FlashSelfAttention(nn.Module):
|
|
62 |
(default: 0.0)
|
63 |
"""
|
64 |
|
65 |
-
def __init__(
|
66 |
-
self,
|
67 |
-
causal=False,
|
68 |
-
softmax_scale=None,
|
69 |
-
attention_dropout=0.0,
|
70 |
-
window_size=(-1, -1),
|
71 |
-
alibi_slopes=None,
|
72 |
-
deterministic=False,
|
73 |
-
):
|
74 |
super().__init__()
|
75 |
assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
|
76 |
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
|
@@ -78,7 +66,6 @@ class FlashSelfAttention(nn.Module):
|
|
78 |
self.softmax_scale = softmax_scale
|
79 |
self.drop = nn.Dropout(attention_dropout)
|
80 |
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
81 |
-
self.window_size = window_size
|
82 |
self.deterministic = deterministic
|
83 |
|
84 |
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
|
@@ -102,8 +89,6 @@ class FlashSelfAttention(nn.Module):
|
|
102 |
assert qkv.is_cuda
|
103 |
causal = self.causal if causal is None else causal
|
104 |
unpadded = cu_seqlens is not None
|
105 |
-
if self.alibi_slopes is not None:
|
106 |
-
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
|
107 |
if unpadded:
|
108 |
assert cu_seqlens.dtype == torch.int32
|
109 |
assert max_seqlen is not None
|
@@ -116,7 +101,6 @@ class FlashSelfAttention(nn.Module):
|
|
116 |
softmax_scale=self.softmax_scale,
|
117 |
causal=causal,
|
118 |
alibi_slopes=self.alibi_slopes,
|
119 |
-
window_size=self.window_size,
|
120 |
deterministic=self.deterministic,
|
121 |
)
|
122 |
else:
|
@@ -126,7 +110,6 @@ class FlashSelfAttention(nn.Module):
|
|
126 |
softmax_scale=self.softmax_scale,
|
127 |
causal=causal,
|
128 |
alibi_slopes=self.alibi_slopes,
|
129 |
-
window_size=self.window_size,
|
130 |
deterministic=self.deterministic,
|
131 |
)
|
132 |
|
@@ -142,15 +125,7 @@ class FlashCrossAttention(nn.Module):
|
|
142 |
(default: 0.0)
|
143 |
"""
|
144 |
|
145 |
-
def __init__(
|
146 |
-
self,
|
147 |
-
causal=False,
|
148 |
-
softmax_scale=None,
|
149 |
-
attention_dropout=0.0,
|
150 |
-
alibi_slopes=None,
|
151 |
-
window_size=(-1, -1),
|
152 |
-
deterministic=False,
|
153 |
-
):
|
154 |
super().__init__()
|
155 |
assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
|
156 |
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
|
@@ -158,7 +133,6 @@ class FlashCrossAttention(nn.Module):
|
|
158 |
self.softmax_scale = softmax_scale
|
159 |
self.drop = nn.Dropout(attention_dropout)
|
160 |
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
161 |
-
self.window_size = window_size
|
162 |
self.deterministic = deterministic
|
163 |
|
164 |
def forward(
|
@@ -188,8 +162,6 @@ class FlashCrossAttention(nn.Module):
|
|
188 |
assert q.is_cuda and kv.is_cuda
|
189 |
causal = self.causal if causal is None else causal
|
190 |
unpadded = cu_seqlens is not None
|
191 |
-
if self.alibi_slopes is not None:
|
192 |
-
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
|
193 |
if unpadded:
|
194 |
assert cu_seqlens.dtype == torch.int32
|
195 |
assert max_seqlen is not None
|
@@ -209,7 +181,6 @@ class FlashCrossAttention(nn.Module):
|
|
209 |
softmax_scale=self.softmax_scale,
|
210 |
causal=causal,
|
211 |
alibi_slopes=self.alibi_slopes,
|
212 |
-
window_size=self.window_size,
|
213 |
deterministic=self.deterministic,
|
214 |
)
|
215 |
else:
|
@@ -223,7 +194,6 @@ class FlashCrossAttention(nn.Module):
|
|
223 |
causal=causal,
|
224 |
softmax_scale=self.softmax_scale,
|
225 |
alibi_slopes=self.alibi_slopes,
|
226 |
-
window_size=self.window_size,
|
227 |
deterministic=self.deterministic,
|
228 |
)
|
229 |
|
@@ -399,7 +369,6 @@ class MHA(nn.Module):
|
|
399 |
rotary_emb_scale_base=None,
|
400 |
rotary_emb_interleaved=False,
|
401 |
use_alibi=False,
|
402 |
-
window_size=(-1, -1),
|
403 |
fused_bias_fc=False,
|
404 |
use_flash_attn=False,
|
405 |
return_residual=False,
|
@@ -429,8 +398,6 @@ class MHA(nn.Module):
|
|
429 |
alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device)
|
430 |
else:
|
431 |
alibi_slopes = None
|
432 |
-
if window_size != (-1, -1):
|
433 |
-
assert use_flash_attn, "Local (sliding window) attention code path requires flash_attn"
|
434 |
|
435 |
self.num_heads = num_heads
|
436 |
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
|
@@ -461,12 +428,12 @@ class MHA(nn.Module):
|
|
461 |
)
|
462 |
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
|
463 |
inner_attn_cls = (
|
464 |
-
partial(FlashSelfAttention, alibi_slopes=alibi_slopes
|
465 |
if use_flash_attn
|
466 |
else SelfAttention
|
467 |
)
|
468 |
inner_cross_attn_cls = (
|
469 |
-
partial(FlashCrossAttention, alibi_slopes=alibi_slopes
|
470 |
if use_flash_attn
|
471 |
else CrossAttention
|
472 |
)
|
@@ -619,7 +586,7 @@ class MHA(nn.Module):
|
|
619 |
assert key_padding_mask is None
|
620 |
assert self.use_flash_attn
|
621 |
assert not self.dwconv
|
622 |
-
assert self.rotary_emb_dim == 0
|
623 |
if key_padding_mask is not None:
|
624 |
assert cu_seqlens is None
|
625 |
assert max_seqlen is None
|
@@ -643,7 +610,9 @@ class MHA(nn.Module):
|
|
643 |
else inference_params.seqlen_offset
|
644 |
)
|
645 |
)
|
646 |
-
rotary_max_seqlen =
|
|
|
|
|
647 |
batch, seqlen = x.shape[:2]
|
648 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
649 |
assert x_kv is None and mixer_subset is None
|
@@ -664,7 +633,10 @@ class MHA(nn.Module):
|
|
664 |
):
|
665 |
if self.rotary_emb_dim > 0:
|
666 |
qkv = self.rotary_emb(
|
667 |
-
qkv,
|
|
|
|
|
|
|
668 |
)
|
669 |
if inference_params is None:
|
670 |
if not self.checkpointing:
|
@@ -715,7 +687,11 @@ class MHA(nn.Module):
|
|
715 |
):
|
716 |
if self.rotary_emb_dim > 0:
|
717 |
q, kv = self.rotary_emb(
|
718 |
-
q,
|
|
|
|
|
|
|
|
|
719 |
)
|
720 |
if inference_params is None:
|
721 |
if not self.checkpointing:
|
@@ -731,3 +707,315 @@ class MHA(nn.Module):
|
|
731 |
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
|
732 |
return out if not self.return_residual else (out, x)
|
733 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Copyright (c) 2023, Tri Dao.
|
2 |
|
3 |
import math
|
|
|
7 |
import torch.nn as nn
|
8 |
from einops import rearrange, repeat
|
9 |
|
10 |
+
from flash_attn.utils.distributed import get_dim_for_local_rank
|
11 |
+
|
12 |
try:
|
13 |
from flash_attn import (
|
14 |
flash_attn_kvpacked_func,
|
|
|
27 |
except ImportError:
|
28 |
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
|
29 |
|
30 |
+
from .rotary import RotaryEmbedding
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
|
|
|
58 |
(default: 0.0)
|
59 |
"""
|
60 |
|
61 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, alibi_slopes=None, deterministic=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
super().__init__()
|
63 |
assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
|
64 |
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
|
|
|
66 |
self.softmax_scale = softmax_scale
|
67 |
self.drop = nn.Dropout(attention_dropout)
|
68 |
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
|
|
69 |
self.deterministic = deterministic
|
70 |
|
71 |
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
|
|
|
89 |
assert qkv.is_cuda
|
90 |
causal = self.causal if causal is None else causal
|
91 |
unpadded = cu_seqlens is not None
|
|
|
|
|
92 |
if unpadded:
|
93 |
assert cu_seqlens.dtype == torch.int32
|
94 |
assert max_seqlen is not None
|
|
|
101 |
softmax_scale=self.softmax_scale,
|
102 |
causal=causal,
|
103 |
alibi_slopes=self.alibi_slopes,
|
|
|
104 |
deterministic=self.deterministic,
|
105 |
)
|
106 |
else:
|
|
|
110 |
softmax_scale=self.softmax_scale,
|
111 |
causal=causal,
|
112 |
alibi_slopes=self.alibi_slopes,
|
|
|
113 |
deterministic=self.deterministic,
|
114 |
)
|
115 |
|
|
|
125 |
(default: 0.0)
|
126 |
"""
|
127 |
|
128 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, alibi_slopes=None, deterministic=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
super().__init__()
|
130 |
assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
|
131 |
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
|
|
|
133 |
self.softmax_scale = softmax_scale
|
134 |
self.drop = nn.Dropout(attention_dropout)
|
135 |
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
|
|
136 |
self.deterministic = deterministic
|
137 |
|
138 |
def forward(
|
|
|
162 |
assert q.is_cuda and kv.is_cuda
|
163 |
causal = self.causal if causal is None else causal
|
164 |
unpadded = cu_seqlens is not None
|
|
|
|
|
165 |
if unpadded:
|
166 |
assert cu_seqlens.dtype == torch.int32
|
167 |
assert max_seqlen is not None
|
|
|
181 |
softmax_scale=self.softmax_scale,
|
182 |
causal=causal,
|
183 |
alibi_slopes=self.alibi_slopes,
|
|
|
184 |
deterministic=self.deterministic,
|
185 |
)
|
186 |
else:
|
|
|
194 |
causal=causal,
|
195 |
softmax_scale=self.softmax_scale,
|
196 |
alibi_slopes=self.alibi_slopes,
|
|
|
197 |
deterministic=self.deterministic,
|
198 |
)
|
199 |
|
|
|
369 |
rotary_emb_scale_base=None,
|
370 |
rotary_emb_interleaved=False,
|
371 |
use_alibi=False,
|
|
|
372 |
fused_bias_fc=False,
|
373 |
use_flash_attn=False,
|
374 |
return_residual=False,
|
|
|
398 |
alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device)
|
399 |
else:
|
400 |
alibi_slopes = None
|
|
|
|
|
401 |
|
402 |
self.num_heads = num_heads
|
403 |
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
|
|
|
428 |
)
|
429 |
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
|
430 |
inner_attn_cls = (
|
431 |
+
partial(FlashSelfAttention, alibi_slopes=alibi_slopes)
|
432 |
if use_flash_attn
|
433 |
else SelfAttention
|
434 |
)
|
435 |
inner_cross_attn_cls = (
|
436 |
+
partial(FlashCrossAttention, alibi_slopes=alibi_slopes)
|
437 |
if use_flash_attn
|
438 |
else CrossAttention
|
439 |
)
|
|
|
586 |
assert key_padding_mask is None
|
587 |
assert self.use_flash_attn
|
588 |
assert not self.dwconv
|
589 |
+
# assert self.rotary_emb_dim == 0
|
590 |
if key_padding_mask is not None:
|
591 |
assert cu_seqlens is None
|
592 |
assert max_seqlen is None
|
|
|
610 |
else inference_params.seqlen_offset
|
611 |
)
|
612 |
)
|
613 |
+
rotary_max_seqlen = (
|
614 |
+
inference_params.max_sequence_len if inference_params is not None else max_seqlen
|
615 |
+
)
|
616 |
batch, seqlen = x.shape[:2]
|
617 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
618 |
assert x_kv is None and mixer_subset is None
|
|
|
633 |
):
|
634 |
if self.rotary_emb_dim > 0:
|
635 |
qkv = self.rotary_emb(
|
636 |
+
qkv,
|
637 |
+
seqlen_offset=seqlen_offset,
|
638 |
+
cu_seqlens=cu_seqlens,
|
639 |
+
max_seqlen=rotary_max_seqlen,
|
640 |
)
|
641 |
if inference_params is None:
|
642 |
if not self.checkpointing:
|
|
|
687 |
):
|
688 |
if self.rotary_emb_dim > 0:
|
689 |
q, kv = self.rotary_emb(
|
690 |
+
q,
|
691 |
+
kv,
|
692 |
+
seqlen_offset=seqlen_offset,
|
693 |
+
cu_seqlens=cu_seqlens,
|
694 |
+
max_seqlen=rotary_max_seqlen,
|
695 |
)
|
696 |
if inference_params is None:
|
697 |
if not self.checkpointing:
|
|
|
707 |
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
|
708 |
return out if not self.return_residual else (out, x)
|
709 |
|
710 |
+
|
711 |
+
class ParallelMHA(nn.Module):
|
712 |
+
"""Multi-head self-attention and cross-attention"""
|
713 |
+
|
714 |
+
def __init__(
|
715 |
+
self,
|
716 |
+
embed_dim,
|
717 |
+
num_heads,
|
718 |
+
process_group,
|
719 |
+
num_heads_kv=None,
|
720 |
+
qkv_proj_bias=True,
|
721 |
+
out_proj_bias=True,
|
722 |
+
dropout=0.0,
|
723 |
+
softmax_scale=None,
|
724 |
+
causal=False,
|
725 |
+
layer_idx=None,
|
726 |
+
rotary_emb_dim=0,
|
727 |
+
rotary_emb_base=10000.0,
|
728 |
+
rotary_emb_scale_base=None,
|
729 |
+
rotary_emb_interleaved=False,
|
730 |
+
use_alibi=False,
|
731 |
+
use_flash_attn=False,
|
732 |
+
checkpointing=False,
|
733 |
+
sequence_parallel=True,
|
734 |
+
device=None,
|
735 |
+
dtype=None,
|
736 |
+
) -> None:
|
737 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
738 |
+
super().__init__()
|
739 |
+
self.embed_dim = embed_dim
|
740 |
+
self.causal = causal
|
741 |
+
self.layer_idx = layer_idx
|
742 |
+
self.rotary_emb_dim = rotary_emb_dim
|
743 |
+
self.use_flash_attn = use_flash_attn
|
744 |
+
self.checkpointing = checkpointing
|
745 |
+
self.process_group = process_group
|
746 |
+
self.world_size = process_group.size()
|
747 |
+
self.local_rank = torch.distributed.get_rank(process_group)
|
748 |
+
|
749 |
+
self.num_heads = num_heads
|
750 |
+
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
751 |
+
|
752 |
+
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
|
753 |
+
assert (
|
754 |
+
self.num_heads % self.num_heads_kv == 0
|
755 |
+
), "num_heads must be divisible by num_heads_kv"
|
756 |
+
|
757 |
+
self.num_heads_per_rank = get_dim_for_local_rank(
|
758 |
+
self.num_heads, self.world_size, self.local_rank
|
759 |
+
)
|
760 |
+
self.num_heads_kv_per_rank = get_dim_for_local_rank(
|
761 |
+
self.num_heads_kv, self.world_size, self.local_rank
|
762 |
+
)
|
763 |
+
self.head_dim = self.embed_dim // num_heads
|
764 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
765 |
+
|
766 |
+
if use_alibi:
|
767 |
+
assert use_flash_attn, "ALiBi code path requires flash_attn"
|
768 |
+
num_heads_local = math.ceil(self.num_heads / self.world_size)
|
769 |
+
alibi_slopes = torch.tensor(
|
770 |
+
get_alibi_slopes(num_heads)[
|
771 |
+
self.local_rank * num_heads_local : (self.local_rank + 1) * num_heads_local
|
772 |
+
],
|
773 |
+
device=device,
|
774 |
+
)
|
775 |
+
else:
|
776 |
+
alibi_slopes = None
|
777 |
+
|
778 |
+
if self.rotary_emb_dim > 0:
|
779 |
+
assert RotaryEmbedding is not None, "rotary_emb is not installed"
|
780 |
+
self.rotary_emb = RotaryEmbedding(
|
781 |
+
self.rotary_emb_dim,
|
782 |
+
base=rotary_emb_base,
|
783 |
+
scale_base=rotary_emb_scale_base,
|
784 |
+
interleaved=rotary_emb_interleaved,
|
785 |
+
device=device,
|
786 |
+
)
|
787 |
+
|
788 |
+
if ColumnParallelLinear is None or RowParallelLinear is None:
|
789 |
+
raise ImportError("fused_dense is not installed")
|
790 |
+
self.Wqkv = ColumnParallelLinear(
|
791 |
+
embed_dim,
|
792 |
+
qkv_dim,
|
793 |
+
process_group,
|
794 |
+
bias=qkv_proj_bias,
|
795 |
+
sequence_parallel=sequence_parallel,
|
796 |
+
multiple_of=self.head_dim * (self.num_heads // self.num_heads_kv + 2),
|
797 |
+
**factory_kwargs,
|
798 |
+
)
|
799 |
+
inner_attn_cls = (
|
800 |
+
partial(FlashSelfAttention, alibi_slopes=alibi_slopes)
|
801 |
+
if use_flash_attn
|
802 |
+
else SelfAttention
|
803 |
+
)
|
804 |
+
inner_cross_attn_cls = (
|
805 |
+
partial(FlashCrossAttention, alibi_slopes=alibi_slopes)
|
806 |
+
if use_flash_attn
|
807 |
+
else CrossAttention
|
808 |
+
)
|
809 |
+
self.inner_attn = inner_attn_cls(
|
810 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
811 |
+
)
|
812 |
+
self.inner_cross_attn = inner_cross_attn_cls(
|
813 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
814 |
+
)
|
815 |
+
self.out_proj = RowParallelLinear(
|
816 |
+
embed_dim,
|
817 |
+
embed_dim,
|
818 |
+
process_group,
|
819 |
+
bias=out_proj_bias,
|
820 |
+
sequence_parallel=sequence_parallel,
|
821 |
+
multiple_of=self.head_dim,
|
822 |
+
**factory_kwargs,
|
823 |
+
)
|
824 |
+
|
825 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
|
826 |
+
dtype = self.out_proj.weight.dtype if dtype is None else dtype
|
827 |
+
device = self.out_proj.weight.device
|
828 |
+
return torch.empty(
|
829 |
+
batch_size,
|
830 |
+
max_seqlen,
|
831 |
+
2,
|
832 |
+
self.num_heads_kv_per_rank,
|
833 |
+
self.head_dim,
|
834 |
+
dtype=dtype,
|
835 |
+
device=device,
|
836 |
+
)
|
837 |
+
|
838 |
+
def _update_kv_cache(self, kv, inference_params):
|
839 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
|
840 |
+
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
841 |
+
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
842 |
+
|
843 |
+
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
|
844 |
+
"""
|
845 |
+
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
|
846 |
+
q: (batch_size, seqlen_q, nheads, head_dim)
|
847 |
+
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
|
848 |
+
"""
|
849 |
+
assert inference_params is not None and inference_params.seqlen_offset > 0
|
850 |
+
assert self.use_flash_attn
|
851 |
+
if self.rotary_emb_dim > 0:
|
852 |
+
assert self.rotary_emb.scale is None, "This code path does not support xPos"
|
853 |
+
self.rotary_emb._update_cos_sin_cache(
|
854 |
+
inference_params.max_seqlen, device=q.device, dtype=q.dtype
|
855 |
+
)
|
856 |
+
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
|
857 |
+
else:
|
858 |
+
rotary_cos, rotary_sin = None, None
|
859 |
+
batch = q.shape[0]
|
860 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
861 |
+
cache_seqlens = (
|
862 |
+
inference_params.lengths_per_sample[:batch]
|
863 |
+
if inference_params.lengths_per_sample is not None
|
864 |
+
else inference_params.seqlen_offset
|
865 |
+
)
|
866 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
867 |
+
context = flash_attn_with_kvcache(
|
868 |
+
q,
|
869 |
+
kv_cache[:, :, 0],
|
870 |
+
kv_cache[:, :, 1],
|
871 |
+
kv[:, :, 0],
|
872 |
+
kv[:, :, 1],
|
873 |
+
rotary_cos=rotary_cos,
|
874 |
+
rotary_sin=rotary_sin,
|
875 |
+
cache_seqlens=cache_seqlens,
|
876 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
877 |
+
causal=self.inner_cross_attn.causal,
|
878 |
+
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
|
879 |
+
alibi_slopes=alibi_slopes,
|
880 |
+
)
|
881 |
+
return context
|
882 |
+
|
883 |
+
def _update_kvcache_attention(self, q, kv, inference_params):
|
884 |
+
"""Write kv to inference_params, then do attention"""
|
885 |
+
if inference_params.seqlen_offset == 0 or not self.use_flash_attn:
|
886 |
+
# TODO: this only uses seqlen_offset and not lengths_per_sample.
|
887 |
+
kv = self._update_kv_cache(kv, inference_params)
|
888 |
+
return self.inner_cross_attn(q, kv)
|
889 |
+
else:
|
890 |
+
batch = q.shape[0]
|
891 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
892 |
+
cache_seqlens = (
|
893 |
+
inference_params.lengths_per_sample[:batch]
|
894 |
+
if inference_params.lengths_per_sample is not None
|
895 |
+
else inference_params.seqlen_offset
|
896 |
+
)
|
897 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
898 |
+
context = flash_attn_with_kvcache(
|
899 |
+
q,
|
900 |
+
kv_cache[:, :, 0],
|
901 |
+
kv_cache[:, :, 1],
|
902 |
+
kv[:, :, 0],
|
903 |
+
kv[:, :, 1],
|
904 |
+
cache_seqlens=cache_seqlens,
|
905 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
906 |
+
causal=self.inner_cross_attn.causal,
|
907 |
+
alibi_slopes=alibi_slopes,
|
908 |
+
)
|
909 |
+
return context
|
910 |
+
|
911 |
+
def forward(
|
912 |
+
self, x, seqlen=None, inference_params=None, cu_seqlens=None, max_seqlen=None, **kwargs
|
913 |
+
):
|
914 |
+
"""
|
915 |
+
Arguments:
|
916 |
+
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None and cu_seqlens=None.
|
917 |
+
(seqlen, hidden_dim) if cu_seqlens not None, seqlen equal cu_seqlens[-1].
|
918 |
+
If seqlen is not None and cu_seqlens=None, x is (batch * seqlen, hidden_dim). This is so that when we
|
919 |
+
split x during sequence parallel, we split the batch * seqlen dimension
|
920 |
+
(in case batch is small).
|
921 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
922 |
+
of the sequences in the batch, used to index into x. Only applicable when using
|
923 |
+
FlashAttention.
|
924 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
925 |
+
"""
|
926 |
+
if cu_seqlens is not None:
|
927 |
+
assert max_seqlen is not None
|
928 |
+
assert seqlen is None
|
929 |
+
assert self.use_flash_attn
|
930 |
+
if inference_params is not None:
|
931 |
+
assert cu_seqlens is None and max_seqlen is None
|
932 |
+
qkv = self.Wqkv(x)
|
933 |
+
if seqlen is not None:
|
934 |
+
qkv = rearrange(qkv, "(b s) ... -> b s ...", s=seqlen)
|
935 |
+
kwargs = (
|
936 |
+
{"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
|
937 |
+
if self.use_flash_attn
|
938 |
+
else kwargs
|
939 |
+
)
|
940 |
+
seqlen_offset = (
|
941 |
+
0
|
942 |
+
if inference_params is None
|
943 |
+
else (
|
944 |
+
inference_params.lengths_per_sample
|
945 |
+
if inference_params.lengths_per_sample is not None
|
946 |
+
else inference_params.seqlen_offset
|
947 |
+
)
|
948 |
+
)
|
949 |
+
rotary_max_seqlen = (
|
950 |
+
inference_params.max_sequence_len if inference_params is not None else max_seqlen
|
951 |
+
)
|
952 |
+
if self.num_heads_kv == self.num_heads:
|
953 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
954 |
+
if (
|
955 |
+
inference_params is None
|
956 |
+
or inference_params.seqlen_offset == 0
|
957 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
958 |
+
or not self.use_flash_attn
|
959 |
+
):
|
960 |
+
if self.rotary_emb_dim > 0:
|
961 |
+
qkv = self.rotary_emb(
|
962 |
+
qkv,
|
963 |
+
seqlen_offset=seqlen_offset,
|
964 |
+
cu_seqlens=cu_seqlens,
|
965 |
+
max_seqlen=rotary_max_seqlen,
|
966 |
+
)
|
967 |
+
if inference_params is None:
|
968 |
+
if not self.checkpointing:
|
969 |
+
context = self.inner_attn(qkv, **kwargs)
|
970 |
+
else:
|
971 |
+
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
|
972 |
+
else:
|
973 |
+
context = self._update_kvcache_attention(
|
974 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
975 |
+
)
|
976 |
+
else:
|
977 |
+
context = self._apply_rotary_update_kvcache_attention(
|
978 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
979 |
+
)
|
980 |
+
else:
|
981 |
+
q = rearrange(
|
982 |
+
qkv[..., : self.num_heads_per_rank * self.head_dim],
|
983 |
+
"... (h d) -> ... h d",
|
984 |
+
d=self.head_dim,
|
985 |
+
)
|
986 |
+
kv = rearrange(
|
987 |
+
qkv[..., self.num_heads_per_rank * self.head_dim :],
|
988 |
+
"... (two hkv d) -> ... two hkv d",
|
989 |
+
two=2,
|
990 |
+
d=self.head_dim,
|
991 |
+
)
|
992 |
+
if (
|
993 |
+
inference_params is None
|
994 |
+
or inference_params.seqlen_offset == 0
|
995 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
996 |
+
or not self.use_flash_attn
|
997 |
+
):
|
998 |
+
if self.rotary_emb_dim > 0:
|
999 |
+
q, kv = self.rotary_emb(
|
1000 |
+
q,
|
1001 |
+
kv,
|
1002 |
+
seqlen_offset=seqlen_offset,
|
1003 |
+
cu_seqlens=cu_seqlens,
|
1004 |
+
max_seqlen=rotary_max_seqlen,
|
1005 |
+
)
|
1006 |
+
if inference_params is None:
|
1007 |
+
if not self.checkpointing:
|
1008 |
+
context = self.inner_cross_attn(q, kv, **kwargs)
|
1009 |
+
else:
|
1010 |
+
context = torch.utils.checkpoint.checkpoint(
|
1011 |
+
self.inner_cross_attn, q, kv, **kwargs
|
1012 |
+
)
|
1013 |
+
else:
|
1014 |
+
context = self._update_kvcache_attention(q, kv, inference_params)
|
1015 |
+
else:
|
1016 |
+
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
1017 |
+
context = rearrange(context, "... h d -> ... (h d)")
|
1018 |
+
if seqlen is not None:
|
1019 |
+
context = rearrange(context, "b s d -> (b s) d")
|
1020 |
+
out = self.out_proj(context)
|
1021 |
+
return out
|
modeling_xlm_roberta.py
CHANGED
@@ -45,7 +45,7 @@ from .embedding import XLMRobertaEmbeddings
|
|
45 |
from .mha import MHA
|
46 |
from .mlp import FusedMLP, Mlp
|
47 |
from .stochastic_depth import StochasticDepth
|
48 |
-
|
49 |
|
50 |
try:
|
51 |
from flash_attn.ops.fused_dense import FusedDense
|
@@ -91,7 +91,7 @@ def create_mixer_cls(config, cross_attn=False, return_residual=False):
|
|
91 |
rotary_kwargs = {}
|
92 |
if config.position_embedding_type == "rotary":
|
93 |
rotary_kwargs["rotary_emb_dim"] = getattr(
|
94 |
-
config, "rotary_emb_dim", config.hidden_size
|
95 |
)
|
96 |
rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
|
97 |
rotary_kwargs["rotary_emb_scale_base"] = getattr(
|
|
|
45 |
from .mha import MHA
|
46 |
from .mlp import FusedMLP, Mlp
|
47 |
from .stochastic_depth import StochasticDepth
|
48 |
+
from .rotary import RotaryEmbedding
|
49 |
|
50 |
try:
|
51 |
from flash_attn.ops.fused_dense import FusedDense
|
|
|
91 |
rotary_kwargs = {}
|
92 |
if config.position_embedding_type == "rotary":
|
93 |
rotary_kwargs["rotary_emb_dim"] = getattr(
|
94 |
+
config, "rotary_emb_dim", config.hidden_size / 12
|
95 |
)
|
96 |
rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
|
97 |
rotary_kwargs["rotary_emb_scale_base"] = getattr(
|
rotary.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao.
|
2 |
+
|
3 |
+
import math
|
4 |
+
from typing import Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
9 |
+
|
10 |
+
|
11 |
+
def rotate_half(x, interleaved=False):
|
12 |
+
if not interleaved:
|
13 |
+
x1, x2 = x.chunk(2, dim=-1)
|
14 |
+
return torch.cat((-x2, x1), dim=-1)
|
15 |
+
else:
|
16 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
17 |
+
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
18 |
+
|
19 |
+
|
20 |
+
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
|
21 |
+
"""
|
22 |
+
x: (batch_size, seqlen, nheads, headdim)
|
23 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
24 |
+
"""
|
25 |
+
ro_dim = cos.shape[-1] * 2
|
26 |
+
assert ro_dim <= x.shape[-1]
|
27 |
+
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
28 |
+
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
29 |
+
return torch.cat(
|
30 |
+
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
31 |
+
dim=-1,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
class ApplyRotaryEmb(torch.autograd.Function):
|
36 |
+
@staticmethod
|
37 |
+
def forward(
|
38 |
+
ctx,
|
39 |
+
x,
|
40 |
+
cos,
|
41 |
+
sin,
|
42 |
+
interleaved=False,
|
43 |
+
inplace=False,
|
44 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
45 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
46 |
+
max_seqlen: Optional[int] = None,
|
47 |
+
):
|
48 |
+
out = apply_rotary(
|
49 |
+
x,
|
50 |
+
cos,
|
51 |
+
sin,
|
52 |
+
seqlen_offsets=seqlen_offsets,
|
53 |
+
cu_seqlens=cu_seqlens,
|
54 |
+
max_seqlen=max_seqlen,
|
55 |
+
interleaved=interleaved,
|
56 |
+
inplace=inplace,
|
57 |
+
)
|
58 |
+
if isinstance(seqlen_offsets, int):
|
59 |
+
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
60 |
+
ctx.seqlen_offsets = seqlen_offsets
|
61 |
+
else:
|
62 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
63 |
+
ctx.seqlen_offsets = None
|
64 |
+
ctx.interleaved = interleaved
|
65 |
+
ctx.inplace = inplace
|
66 |
+
ctx.max_seqlen = max_seqlen
|
67 |
+
return out if not inplace else x
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def backward(ctx, do):
|
71 |
+
seqlen_offsets = ctx.seqlen_offsets
|
72 |
+
if seqlen_offsets is None:
|
73 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
74 |
+
else:
|
75 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
76 |
+
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
|
77 |
+
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
78 |
+
if not ctx.interleaved and not ctx.inplace:
|
79 |
+
do = do.clone()
|
80 |
+
dx = apply_rotary(
|
81 |
+
do,
|
82 |
+
cos,
|
83 |
+
sin,
|
84 |
+
seqlen_offsets=seqlen_offsets,
|
85 |
+
cu_seqlens=cu_seqlens,
|
86 |
+
max_seqlen=ctx.max_seqlen,
|
87 |
+
interleaved=ctx.interleaved,
|
88 |
+
inplace=ctx.inplace,
|
89 |
+
conjugate=True,
|
90 |
+
)
|
91 |
+
return dx, None, None, None, None, None, None, None
|
92 |
+
|
93 |
+
|
94 |
+
def apply_rotary_emb(
|
95 |
+
x,
|
96 |
+
cos,
|
97 |
+
sin,
|
98 |
+
interleaved=False,
|
99 |
+
inplace=False,
|
100 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
101 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
102 |
+
max_seqlen: Optional[int] = None,
|
103 |
+
):
|
104 |
+
"""
|
105 |
+
Arguments:
|
106 |
+
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
107 |
+
else (total_seqlen, nheads, headdim)
|
108 |
+
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
109 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
110 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
111 |
+
inplace: if True, apply rotary embedding in-place.
|
112 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
113 |
+
Most commonly used in inference when we have KV cache.
|
114 |
+
cu_seqlens: (batch + 1,) or None
|
115 |
+
max_seqlen: int
|
116 |
+
Return:
|
117 |
+
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
118 |
+
else (total_seqlen, nheads, headdim)
|
119 |
+
rotary_dim must be <= headdim
|
120 |
+
Apply rotary embedding to the first rotary_dim of x.
|
121 |
+
"""
|
122 |
+
return ApplyRotaryEmb.apply(
|
123 |
+
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
|
124 |
+
)
|
125 |
+
|
126 |
+
|
127 |
+
# For backward compatibility
|
128 |
+
apply_rotary_emb_func = apply_rotary_emb
|
129 |
+
|
130 |
+
|
131 |
+
class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
132 |
+
@staticmethod
|
133 |
+
def forward(
|
134 |
+
ctx,
|
135 |
+
qkv,
|
136 |
+
cos,
|
137 |
+
sin,
|
138 |
+
cos_k=None,
|
139 |
+
sin_k=None,
|
140 |
+
interleaved=False,
|
141 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
142 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
143 |
+
max_seqlen: Optional[int] = None,
|
144 |
+
):
|
145 |
+
# batch, seqlen, three, nheads, headdim = qkv.shape
|
146 |
+
assert qkv.shape[-3] == 3
|
147 |
+
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
148 |
+
# Call 1 kernel instead of 2 kernels
|
149 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
150 |
+
# dimensions, we get the same tensor
|
151 |
+
qk = rearrange(qkv[..., :2, :, :], "... t h d -> ... (t h) d")
|
152 |
+
# qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim)
|
153 |
+
apply_rotary(
|
154 |
+
qk,
|
155 |
+
cos,
|
156 |
+
sin,
|
157 |
+
seqlen_offsets=seqlen_offsets,
|
158 |
+
interleaved=interleaved,
|
159 |
+
inplace=True,
|
160 |
+
cu_seqlens=cu_seqlens,
|
161 |
+
max_seqlen=max_seqlen,
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
cos_k = cos if cos_k is None else cos_k
|
165 |
+
sin_k = sin if sin_k is None else sin_k
|
166 |
+
q, k = qkv[..., 0, :, :], qkv[..., 1, :, :]
|
167 |
+
apply_rotary(
|
168 |
+
q,
|
169 |
+
cos,
|
170 |
+
sin,
|
171 |
+
seqlen_offsets,
|
172 |
+
interleaved=interleaved,
|
173 |
+
inplace=True,
|
174 |
+
cu_seqlens=cu_seqlens,
|
175 |
+
max_seqlen=max_seqlen,
|
176 |
+
)
|
177 |
+
apply_rotary(
|
178 |
+
k,
|
179 |
+
cos_k,
|
180 |
+
sin_k,
|
181 |
+
seqlen_offsets,
|
182 |
+
interleaved=interleaved,
|
183 |
+
inplace=True,
|
184 |
+
cu_seqlens=cu_seqlens,
|
185 |
+
max_seqlen=max_seqlen,
|
186 |
+
)
|
187 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k)
|
188 |
+
if isinstance(seqlen_offsets, int):
|
189 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens)
|
190 |
+
ctx.seqlen_offsets = seqlen_offsets
|
191 |
+
else:
|
192 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets)
|
193 |
+
ctx.seqlen_offsets = None
|
194 |
+
ctx.max_seqlen = max_seqlen
|
195 |
+
ctx.interleaved = interleaved
|
196 |
+
return qkv
|
197 |
+
|
198 |
+
@staticmethod
|
199 |
+
def backward(ctx, dqkv):
|
200 |
+
seqlen_offsets = ctx.seqlen_offsets
|
201 |
+
if seqlen_offsets is None:
|
202 |
+
cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
203 |
+
else:
|
204 |
+
cos, sin, cos_k, sin_k, cu_seqlens = ctx.saved_tensors
|
205 |
+
if cos_k is None and sin_k is None and dqkv.is_contiguous():
|
206 |
+
# Call 1 kernel instead of 2 kernels
|
207 |
+
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads)
|
208 |
+
# dimensions, we get the same tensor
|
209 |
+
dqk = rearrange(dqkv[..., :2, :, :], "... t h d -> ... (t h) d")
|
210 |
+
apply_rotary(
|
211 |
+
dqk,
|
212 |
+
cos,
|
213 |
+
sin,
|
214 |
+
seqlen_offsets=seqlen_offsets,
|
215 |
+
interleaved=ctx.interleaved,
|
216 |
+
inplace=True,
|
217 |
+
conjugate=True,
|
218 |
+
cu_seqlens=cu_seqlens,
|
219 |
+
max_seqlen=ctx.max_seqlen,
|
220 |
+
)
|
221 |
+
else:
|
222 |
+
cos_k = cos if cos_k is None else cos_k
|
223 |
+
sin_k = sin if sin_k is None else sin_k
|
224 |
+
dq, dk = dqkv[..., 0, :, :], dqkv[..., 1, :, :]
|
225 |
+
apply_rotary(
|
226 |
+
|
227 |
+
dq,
|
228 |
+
cos,
|
229 |
+
sin,
|
230 |
+
seqlen_offsets,
|
231 |
+
interleaved=ctx.interleaved,
|
232 |
+
inplace=True,
|
233 |
+
conjugate=True,
|
234 |
+
cu_seqlens=cu_seqlens,
|
235 |
+
max_seqlen=ctx.max_seqlen,
|
236 |
+
)
|
237 |
+
apply_rotary(
|
238 |
+
dk,
|
239 |
+
cos_k,
|
240 |
+
sin_k,
|
241 |
+
seqlen_offsets,
|
242 |
+
interleaved=ctx.interleaved,
|
243 |
+
inplace=True,
|
244 |
+
conjugate=True,
|
245 |
+
cu_seqlens=cu_seqlens,
|
246 |
+
max_seqlen=ctx.max_seqlen,
|
247 |
+
)
|
248 |
+
return dqkv, None, None, None, None, None, None, None, None
|
249 |
+
|
250 |
+
|
251 |
+
def apply_rotary_emb_qkv_(
|
252 |
+
qkv,
|
253 |
+
cos,
|
254 |
+
sin,
|
255 |
+
cos_k=None,
|
256 |
+
sin_k=None,
|
257 |
+
interleaved=False,
|
258 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
259 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
260 |
+
max_seqlen: Optional[int] = None,
|
261 |
+
):
|
262 |
+
"""
|
263 |
+
Arguments:
|
264 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
|
265 |
+
else (total_seqlen, 3, nheads, headdim)
|
266 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
267 |
+
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
|
268 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
|
269 |
+
1st half and 2nd half (GPT-NeoX style).
|
270 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
|
271 |
+
Most commonly used in inference when we have KV cache.
|
272 |
+
cu_seqlens: (batch + 1,) or None
|
273 |
+
max_seqlen: int
|
274 |
+
Return:
|
275 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
|
276 |
+
else (total_seqlen, 3, nheads, headdim)
|
277 |
+
rotary_dim must be <= headdim
|
278 |
+
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
|
279 |
+
"""
|
280 |
+
return ApplyRotaryEmbQKV_.apply(
|
281 |
+
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
|
282 |
+
)
|
283 |
+
|
284 |
+
|
285 |
+
class ApplyRotaryEmbKV_(torch.autograd.Function):
|
286 |
+
@staticmethod
|
287 |
+
def forward(
|
288 |
+
ctx,
|
289 |
+
kv,
|
290 |
+
cos,
|
291 |
+
sin,
|
292 |
+
interleaved=False,
|
293 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
294 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
295 |
+
max_seqlen: Optional[int] = None,
|
296 |
+
):
|
297 |
+
# batch, seqlen, two, nheads, headdim = kv.shape
|
298 |
+
assert kv.shape[-3] == 2
|
299 |
+
k = kv[..., 0, :, :]
|
300 |
+
apply_rotary(
|
301 |
+
k,
|
302 |
+
cos,
|
303 |
+
sin,
|
304 |
+
seqlen_offsets=seqlen_offsets,
|
305 |
+
interleaved=interleaved,
|
306 |
+
inplace=True,
|
307 |
+
cu_seqlens=cu_seqlens,
|
308 |
+
max_seqlen=max_seqlen,
|
309 |
+
)
|
310 |
+
if isinstance(seqlen_offsets, int):
|
311 |
+
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
312 |
+
ctx.seqlen_offsets = seqlen_offsets
|
313 |
+
else:
|
314 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
315 |
+
ctx.seqlen_offsets = None
|
316 |
+
ctx.max_seqlen = max_seqlen
|
317 |
+
ctx.interleaved = interleaved
|
318 |
+
return kv
|
319 |
+
|
320 |
+
@staticmethod
|
321 |
+
def backward(ctx, dkv):
|
322 |
+
seqlen_offsets = ctx.seqlen_offsets
|
323 |
+
if seqlen_offsets is None:
|
324 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
325 |
+
else:
|
326 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
327 |
+
apply_rotary(
|
328 |
+
dkv[..., 0, :, :],
|
329 |
+
cos,
|
330 |
+
sin,
|
331 |
+
seqlen_offsets=seqlen_offsets,
|
332 |
+
interleaved=ctx.interleaved,
|
333 |
+
inplace=True,
|
334 |
+
conjugate=True,
|
335 |
+
cu_seqlens=cu_seqlens,
|
336 |
+
max_seqlen=ctx.max_seqlen,
|
337 |
+
)
|
338 |
+
return dkv, None, None, None, None, None, None
|
339 |
+
|
340 |
+
|
341 |
+
apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply
|
342 |
+
|
343 |
+
|
344 |
+
def apply_rotary_emb_kv_(
|
345 |
+
kv,
|
346 |
+
cos,
|
347 |
+
sin,
|
348 |
+
interleaved=False,
|
349 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
350 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
351 |
+
max_seqlen: Optional[int] = None,
|
352 |
+
):
|
353 |
+
"""
|
354 |
+
Arguments:
|
355 |
+
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
|
356 |
+
else (total_seqlen, 2, nheads, headdim)
|
357 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
358 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
|
359 |
+
1st half and 2nd half (GPT-NeoX style).
|
360 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
|
361 |
+
Most commonly used in inference when we have KV cache.
|
362 |
+
cu_seqlens: (batch + 1,) or None
|
363 |
+
max_seqlen: int
|
364 |
+
Return:
|
365 |
+
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
|
366 |
+
else (total_seqlen, 2, nheads, headdim)
|
367 |
+
rotary_dim must be <= headdim
|
368 |
+
Apply rotary embedding *inplace* to the first rotary_dim of K.
|
369 |
+
"""
|
370 |
+
return ApplyRotaryEmbKV_.apply(
|
371 |
+
kv, cos, sin, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
|
372 |
+
)
|
373 |
+
|
374 |
+
|
375 |
+
class RotaryEmbedding(torch.nn.Module):
|
376 |
+
"""
|
377 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
378 |
+
A crucial insight from the method is that the query and keys are
|
379 |
+
transformed by rotation matrices which depend on the relative positions.
|
380 |
+
|
381 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
382 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
383 |
+
|
384 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
385 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
386 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
387 |
+
|
388 |
+
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
389 |
+
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
390 |
+
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(
|
394 |
+
self,
|
395 |
+
dim: int,
|
396 |
+
base=10000.0,
|
397 |
+
interleaved=False,
|
398 |
+
scale_base=None,
|
399 |
+
pos_idx_in_fp32=True,
|
400 |
+
device=None,
|
401 |
+
):
|
402 |
+
"""
|
403 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
404 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
405 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
406 |
+
otherwise they might be in lower precision.
|
407 |
+
This option was added because previously (before 2023-07-02), when we construct
|
408 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
409 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
410 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
411 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
412 |
+
embeddings for some positions will coincide.
|
413 |
+
To maintain compatibility with models previously trained in pure bf16,
|
414 |
+
we add this option.
|
415 |
+
"""
|
416 |
+
super().__init__()
|
417 |
+
self.dim = dim
|
418 |
+
self.base = float(base)
|
419 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
420 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
421 |
+
inv_freq = self._compute_inv_freq(device)
|
422 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
423 |
+
self.interleaved = interleaved
|
424 |
+
self.scale_base = scale_base
|
425 |
+
scale = (
|
426 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
427 |
+
if scale_base is not None
|
428 |
+
else None
|
429 |
+
)
|
430 |
+
self.register_buffer("scale", scale, persistent=False)
|
431 |
+
|
432 |
+
self._seq_len_cached = 0
|
433 |
+
self._cos_cached = None
|
434 |
+
self._sin_cached = None
|
435 |
+
self._cos_k_cached = None
|
436 |
+
self._sin_k_cached = None
|
437 |
+
|
438 |
+
def _compute_inv_freq(self, device=None):
|
439 |
+
return 1.0 / (
|
440 |
+
self.base
|
441 |
+
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
|
442 |
+
)
|
443 |
+
|
444 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
445 |
+
# Reset the tables if the sequence length has changed,
|
446 |
+
# if we're on a new device (possibly due to tracing for instance),
|
447 |
+
# or if we're switching from inference mode to training
|
448 |
+
if (
|
449 |
+
seqlen > self._seq_len_cached
|
450 |
+
or self._cos_cached is None
|
451 |
+
or self._cos_cached.device != device
|
452 |
+
or self._cos_cached.dtype != dtype
|
453 |
+
or (self.training and self._cos_cached.is_inference())
|
454 |
+
):
|
455 |
+
self._seq_len_cached = seqlen
|
456 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
457 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
458 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
459 |
+
if self.pos_idx_in_fp32:
|
460 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
461 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
462 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
463 |
+
# cos & sin output to change significantly.
|
464 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
465 |
+
if self.inv_freq.dtype != torch.float32:
|
466 |
+
inv_freq = self._compute_inv_freq(device=device)
|
467 |
+
else:
|
468 |
+
inv_freq = self.inv_freq
|
469 |
+
else:
|
470 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
471 |
+
inv_freq = self.inv_freq
|
472 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
473 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
474 |
+
freqs = torch.outer(t, inv_freq)
|
475 |
+
if self.scale is None:
|
476 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
477 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
478 |
+
else:
|
479 |
+
power = (
|
480 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
481 |
+
- seqlen // 2
|
482 |
+
) / self.scale_base
|
483 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
484 |
+
# We want the multiplication by scale to happen in fp32
|
485 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
486 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
487 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
488 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
489 |
+
|
490 |
+
def forward(
|
491 |
+
self,
|
492 |
+
qkv: torch.Tensor,
|
493 |
+
kv: Optional[torch.Tensor] = None,
|
494 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
495 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
496 |
+
max_seqlen: Optional[int] = None,
|
497 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
498 |
+
"""
|
499 |
+
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
500 |
+
else it's just q of shape (batch, seqlen, nheads, headdim)
|
501 |
+
kv: (batch, seqlen, 2, nheads, headdim)
|
502 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
503 |
+
Most commonly used in inference when we have KV cache.
|
504 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
505 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
506 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
507 |
+
"""
|
508 |
+
if cu_seqlens is not None:
|
509 |
+
assert max_seqlen is not None
|
510 |
+
seqlen = qkv.shape[1] if max_seqlen is None else max_seqlen
|
511 |
+
if max_seqlen is not None:
|
512 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
513 |
+
elif isinstance(seqlen_offset, int):
|
514 |
+
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
515 |
+
if kv is None:
|
516 |
+
if self.scale is None:
|
517 |
+
return apply_rotary_emb_qkv_(
|
518 |
+
qkv,
|
519 |
+
self._cos_cached,
|
520 |
+
self._sin_cached,
|
521 |
+
interleaved=self.interleaved,
|
522 |
+
seqlen_offsets=seqlen_offset,
|
523 |
+
cu_seqlens=cu_seqlens,
|
524 |
+
max_seqlen=max_seqlen,
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
return apply_rotary_emb_qkv_(
|
528 |
+
qkv,
|
529 |
+
self._cos_cached,
|
530 |
+
self._sin_cached,
|
531 |
+
self._cos_k_cached,
|
532 |
+
self._sin_k_cached,
|
533 |
+
interleaved=self.interleaved,
|
534 |
+
seqlen_offsets=seqlen_offset,
|
535 |
+
cu_seqlens=cu_seqlens,
|
536 |
+
max_seqlen=max_seqlen,
|
537 |
+
)
|
538 |
+
else:
|
539 |
+
q = qkv
|
540 |
+
q = apply_rotary_emb_func(
|
541 |
+
q,
|
542 |
+
self._cos_cached,
|
543 |
+
self._sin_cached,
|
544 |
+
interleaved=self.interleaved,
|
545 |
+
inplace=True,
|
546 |
+
seqlen_offsets=seqlen_offset,
|
547 |
+
cu_seqlens=cu_seqlens,
|
548 |
+
max_seqlen=max_seqlen,
|
549 |
+
)
|
550 |
+
if self.scale is None:
|
551 |
+
kv = apply_rotary_emb_kv_(
|
552 |
+
kv,
|
553 |
+
self._cos_cached,
|
554 |
+
self._sin_cached,
|
555 |
+
interleaved=self.interleaved,
|
556 |
+
seqlen_offsets=seqlen_offset,
|
557 |
+
cu_seqlens=cu_seqlens,
|
558 |
+
max_seqlen=max_seqlen,
|
559 |
+
)
|
560 |
+
else:
|
561 |
+
kv = apply_rotary_emb_kv_(
|
562 |
+
kv,
|
563 |
+
self._cos_k_cached,
|
564 |
+
self._sin_k_cached,
|
565 |
+
interleaved=self.interleaved,
|
566 |
+
seqlen_offsets=seqlen_offset,
|
567 |
+
cu_seqlens=cu_seqlens,
|
568 |
+
max_seqlen=max_seqlen,
|
569 |
+
)
|
570 |
+
return q, kv
|