File size: 7,379 Bytes
1403e54 fbecdcb 1403e54 fbecdcb 1403e54 fbecdcb 1403e54 fbecdcb 1403e54 fbecdcb 1403e54 fbecdcb 1403e54 fbecdcb 1403e54 fbecdcb 1403e54 ded0380 1403e54 ded0380 1403e54 ded0380 1403e54 fbecdcb 1403e54 fbecdcb 1403e54 44c9ee2 1403e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
language: ar
datasets:
- common_voice
- arabic_speech_corpus
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Arabic by Jonatas Grosman
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ar
type: common_voice
args: ar
metrics:
- name: Test WER
type: wer
value: 39.59
- name: Test CER
type: cer
value: 18.18
---
# Wav2Vec2-Large-XLSR-53-Arabic
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice) and [Arabic Speech Corpus](https://huggingface.co/datasets/arabic_speech_corpus).
When using this model, make sure that your speech input is sampled at 16kHz.
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ar"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| ุฃูุฏูู ููู
ุ | ุฃูุฏูู ููู
|
| ููุณุช ููุงู ู
ุณุงูุฉ ุนูู ูุฐู ุงูุฃุฑุถ ุฃุจุนุฏ ู
ู ููู
ุฃู
ุณ. | ููุณุช ูุงูู ู
ุณุงูุฉ ุนูู ูุฐู ุงูุฃุฑุถ ุฃุจุนุฏ ู
ู ููู
ุงูุฃู
ุณ ู
|
| ุฅูู ุชูุจุฑ ุงูู
ุดููุฉ. | ุฅูู ุชูุจุฑ ุงูู
ุดููุฉ |
| ูุฑุบุจ ุฃู ููุชูู ุจู. | ูุฑุบุจ ุฃู ููุชูู ุจู |
| ุฅููู
ูุง ูุนุฑููู ูู
ุงุฐุง ุญุชู. | ุฅููู
ูุง ูุนุฑููู ูู
ุงุฐุง ุญุชู |
| ุณูุณุนุฏูู ู
ุณุงุนุฏุชู ุฃู ููุช ุชุญุจ. | ุณูุณุฆุฏููู
ุณุงุนุฏุชู ุฃู ููุฏ ุชุญุจ |
| ุฃูุญูุจูู ูุธุฑููุฉ ุนูู
ูุฉ ุฅููู ูู ุฃู ุญููุงุช ุฒุญู ู
ูููุฉ ุจุงููุงู
ู ู
ู ุงูุฃู
ุชุนุฉ ุงูู
ูููุฏุฉ. | ุฃุญุจ ูุธุฑูุฉ ุนูู
ูุฉ ุฅูู ูู ุฃู ุญู ูุชุฒุญ ุงูู
ููููุง ุจุงููุงู
ู ู
ู ุงูุฃู
ุช ุนู ุงูู
ูููุฏุฉ |
| ุณุฃุดุชุฑู ูู ููู
ุงู. | ุณุฃุดุชุฑู ูู ููู
ุง |
| ุฃูู ุงูู
ุดููุฉ ุ | ุฃูู ุงูู
ุดูู |
| ููููููููู ููุณูุฌูุฏู ู
ูุง ููู ุงูุณููู
ูุงููุงุชู ููู
ูุง ููู ุงููุฃูุฑูุถู ู
ููู ุฏูุงุจููุฉู ููุงููู
ูููุงุฆูููุฉู ููููู
ู ููุง ููุณูุชูููุจูุฑูููู | ูููู ูุณุฌุฏ ู
ุง ูู ุงูุณู
ุงูุงุช ูู
ุง ูู ุงูุฃุฑุถ ู
ู ุฏุงุจุฉ ูุงูู
ูุงุฆูุฉ ููู
ูุง ูุณุชูุจุฑูู |
## Evaluation
The model can be evaluated as follows on the Arabic test data of Common Voice.
```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ar"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "ยฟ", ".", "!", "ยก", ";", "๏ผ", ":", '""', "%", '"', "๏ฟฝ", "สฟ", "ยท", "แป", "~", "ี",
"ุ", "ุ", "เฅค", "เฅฅ", "ยซ", "ยป", "โ", "โ", "โ", "ใ", "ใ", "โ", "โ", "ใ", "ใ", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "โฆ", "โ", "ยฐ", "ยด", "สพ", "โน", "โบ", "ยฉ", "ยฎ", "โ", "โ", "ใ",
"ใ", "๏น", "๏น", "โง", "๏ฝ", "๏น", "๏ผ", "๏ฝ", "๏ฝ", "๏ผ", "๏ผ", "๏ผป", "๏ผฝ", "ใ", "ใ", "โฅ", "ใฝ",
"ใ", "ใ", "ใ", "ใ", "โจ", "โฉ", "ใ", "๏ผ", "๏ผ", "๏ผ", "โช", "ุ", "/", "\\", "ยบ", "โ", "^", "'", "สป", "ห"]
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
```
**Test Result**:
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-14). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
| Model | WER | CER |
| ------------- | ------------- | ------------- |
| jonatasgrosman/wav2vec2-large-xlsr-53-arabic | **39.59%** | **18.18%** |
| bakrianoo/sinai-voice-ar-stt | 45.30% | 21.84% |
| othrif/wav2vec2-large-xlsr-arabic | 45.93% | 20.51% |
| kmfoda/wav2vec2-large-xlsr-arabic | 54.14% | 26.07% |
| mohammed/wav2vec2-large-xlsr-arabic | 56.11% | 26.79% |
| anas/wav2vec2-large-xlsr-arabic | 62.02% | 27.09% |
| elgeish/wav2vec2-large-xlsr-53-arabic | 100.00% | 100.56% |
|