File size: 7,738 Bytes
a4af462
 
 
 
 
 
1271f95
a4af462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271f95
 
 
7315a6d
a4af462
 
2456c15
a4af462
f35e733
a4af462
 
cb5fb38
 
a4af462
 
 
 
6781b17
 
011c782
6781b17
 
011c782
6781b17
011c782
6781b17
011c782
 
6781b17
 
 
a4af462
 
 
 
 
 
 
 
 
1271f95
a4af462
1271f95
a4af462
 
 
 
 
 
 
d400ae7
 
 
 
a4af462
 
1271f95
a4af462
 
d400ae7
a4af462
 
1271f95
a4af462
1271f95
 
 
 
a4af462
 
1271f95
 
 
 
 
 
 
46c7418
 
 
 
 
a4af462
 
 
1271f95
a4af462
 
 
b92cd0d
 
a4af462
 
 
 
 
 
 
46c7418
a4af462
46c7418
 
 
a4af462
 
7315a6d
1271f95
 
a4af462
80689ba
a4af462
 
 
 
 
 
 
 
7315a6d
 
 
a4af462
7315a6d
a4af462
 
 
 
 
 
 
b97a9b0
a4af462
b97a9b0
 
a4af462
b97a9b0
 
 
a4af462
7315a6d
a4af462
f758bc3
 
 
 
 
a4af462
 
1271f95
 
33eddf9
f758bc3
 
 
 
 
0781a6f
f758bc3
ad7944f
 
 
 
 
88b6861
 
ad7944f
 
 
 
2bd0786
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
language: hu
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Hungarian by Jonatas Grosman
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice hu
      type: common_voice
      args: hu
    metrics:
       - name: Test WER
         type: wer
         value: 31.40
       - name: Test CER
         type: cer
         value: 6.20
---

# Fine-tuned XLSR-53 large model for speech recognition in Hungarian

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hungarian using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows...

Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:

```python
from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-hungarian")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "hu"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian"
SAMPLES = 5

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| BÜSZKÉK VAGYUNK A MAGYAR EMBEREK NAGYSZERŰ SZELLEMI ALKOTÁSAIRA. | BÜSZKÉK VAGYUNK A MAGYAR EMBEREK NAGYSZERŰ SZELLEMI ALKOTÁSAIRE |
| A NEMZETSÉG TAGJAI KÖZÜL EZT TERMESZTIK A LEGSZÉLESEBB KÖRBEN ÍZLETES TERMÉSÉÉRT. | A NEMZETSÉG TAGJAI KÖZÜL ESZSZERMESZTIK A LEGSZELESEBB KÖRBEN IZLETES TERMÉSSÉÉRT |
| A VÁROSBA VÁGYÓDOTT A LEGJOBBAN, ÉPPEN MERT ODA NEM JUTHATOTT EL SOHA. | A VÁROSBA VÁGYÓDOTT A LEGJOBBAN ÉPPEN MERT ODA NEM JUTHATOTT EL SOHA |
| SÍRJA MÁRA MEGSEMMISÜLT. | SIMGI A MANDO MEG SEMMICSEN |
| MINDEN ZENESZÁMOT DRÁGAKŐNEK NEVEZETT. | MINDEN ZENA SZÁMODRAGAKŐNEK NEVEZETT |
| ÍGY MÚLT EL A DÉLELŐTT. | ÍGY MÚLT EL A DÍN ELŐTT |
| REMEK POFA! | A REMEG PUFO |
| SZEMET SZEMÉRT, FOGAT FOGÉRT. | SZEMET SZEMÉRT FOGADD FOGÉRT |
| BIZTOSAN LAKIK ITT NÉHÁNY ATYÁMFIA. | BIZTOSAN LAKIKÉT NÉHANY ATYAMFIA |
| A SOROK KÖZÖTT OLVAS. | A SOROG KÖZÖTT OLVAS |

## Evaluation

The model can be evaluated as follows on the Hungarian test data of Common Voice.

```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "hu"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                   "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                   "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
```

**Test Result**:

In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-22). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.

| Model | WER | CER |
| ------------- | ------------- | ------------- |
| jonatasgrosman/wav2vec2-large-xlsr-53-hungarian | **31.40%** | **6.20%** |
| anton-l/wav2vec2-large-xlsr-53-hungarian | 42.39% | 9.39% |
| gchhablani/wav2vec2-large-xlsr-hu | 46.42% | 10.04% |
| birgermoell/wav2vec2-large-xlsr-hungarian | 46.93% | 10.31% |

## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2021xlsr53-large-hungarian,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {H}ungarian},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-hungarian}},
  year={2021}
}
```