File size: 14,055 Bytes
f787bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
base_model: WinKawaks/vit-small-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-base_tobacco-small_tobacco3482_kd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base_tobacco-small_tobacco3482_kd

This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5105
- Accuracy: 0.815
- Brier Loss: 0.2790
- Nll: 1.4944
- F1 Micro: 0.815
- F1 Macro: 0.7942
- Ece: 0.1287
- Aurc: 0.0524

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 1.0   | 7    | 2.2378          | 0.17     | 0.8975     | 4.4036 | 0.17     | 0.1418   | 0.2519 | 0.8078 |
| No log        | 2.0   | 14   | 1.7484          | 0.38     | 0.7667     | 4.1809 | 0.38     | 0.2513   | 0.3132 | 0.4423 |
| No log        | 3.0   | 21   | 1.1417          | 0.55     | 0.5683     | 1.8669 | 0.55     | 0.4592   | 0.2551 | 0.2287 |
| No log        | 4.0   | 28   | 0.8020          | 0.685    | 0.4327     | 1.7476 | 0.685    | 0.6393   | 0.2274 | 0.1292 |
| No log        | 5.0   | 35   | 0.8347          | 0.645    | 0.4502     | 1.6809 | 0.645    | 0.6306   | 0.1939 | 0.1346 |
| No log        | 6.0   | 42   | 0.6546          | 0.735    | 0.3657     | 1.5210 | 0.735    | 0.7191   | 0.1995 | 0.0901 |
| No log        | 7.0   | 49   | 0.6447          | 0.76     | 0.3375     | 1.5117 | 0.76     | 0.7450   | 0.1781 | 0.0875 |
| No log        | 8.0   | 56   | 0.7089          | 0.775    | 0.3650     | 1.4823 | 0.775    | 0.7554   | 0.2026 | 0.0971 |
| No log        | 9.0   | 63   | 0.5721          | 0.785    | 0.3083     | 1.4053 | 0.785    | 0.7633   | 0.1647 | 0.0651 |
| No log        | 10.0  | 70   | 0.5953          | 0.795    | 0.3130     | 1.4301 | 0.795    | 0.7971   | 0.1661 | 0.0701 |
| No log        | 11.0  | 77   | 0.6352          | 0.79     | 0.3131     | 1.5018 | 0.79     | 0.7607   | 0.1503 | 0.0789 |
| No log        | 12.0  | 84   | 0.7999          | 0.735    | 0.3916     | 1.7141 | 0.735    | 0.7065   | 0.2143 | 0.1178 |
| No log        | 13.0  | 91   | 0.6602          | 0.8      | 0.3099     | 1.8022 | 0.8000   | 0.7746   | 0.1709 | 0.0805 |
| No log        | 14.0  | 98   | 0.6529          | 0.785    | 0.3298     | 1.3607 | 0.785    | 0.7658   | 0.1771 | 0.0858 |
| No log        | 15.0  | 105  | 0.6170          | 0.8      | 0.3098     | 1.3676 | 0.8000   | 0.7838   | 0.1630 | 0.0723 |
| No log        | 16.0  | 112  | 0.6484          | 0.775    | 0.3342     | 1.2826 | 0.775    | 0.7752   | 0.1837 | 0.0827 |
| No log        | 17.0  | 119  | 0.5817          | 0.78     | 0.3019     | 1.6577 | 0.78     | 0.7730   | 0.1566 | 0.0582 |
| No log        | 18.0  | 126  | 0.6528          | 0.78     | 0.3376     | 1.5044 | 0.78     | 0.7788   | 0.1687 | 0.0768 |
| No log        | 19.0  | 133  | 0.6241          | 0.805    | 0.3038     | 1.3465 | 0.805    | 0.7796   | 0.1498 | 0.0759 |
| No log        | 20.0  | 140  | 0.5610          | 0.79     | 0.2948     | 1.4395 | 0.79     | 0.7716   | 0.1515 | 0.0708 |
| No log        | 21.0  | 147  | 0.6829          | 0.78     | 0.3241     | 1.3252 | 0.78     | 0.7687   | 0.1782 | 0.0852 |
| No log        | 22.0  | 154  | 0.5443          | 0.795    | 0.3117     | 1.4374 | 0.795    | 0.7822   | 0.1730 | 0.0679 |
| No log        | 23.0  | 161  | 0.6968          | 0.78     | 0.3474     | 1.7830 | 0.78     | 0.7880   | 0.1745 | 0.0813 |
| No log        | 24.0  | 168  | 0.7422          | 0.75     | 0.3639     | 1.5379 | 0.75     | 0.7238   | 0.1982 | 0.0940 |
| No log        | 25.0  | 175  | 0.5756          | 0.785    | 0.3150     | 1.4739 | 0.785    | 0.7723   | 0.1615 | 0.0675 |
| No log        | 26.0  | 182  | 0.6127          | 0.805    | 0.3036     | 1.5553 | 0.805    | 0.7990   | 0.1416 | 0.0659 |
| No log        | 27.0  | 189  | 0.5852          | 0.795    | 0.3104     | 1.5149 | 0.795    | 0.7808   | 0.1583 | 0.0625 |
| No log        | 28.0  | 196  | 0.5421          | 0.83     | 0.2808     | 1.4320 | 0.83     | 0.8147   | 0.1475 | 0.0558 |
| No log        | 29.0  | 203  | 0.5588          | 0.79     | 0.2888     | 1.5801 | 0.79     | 0.7723   | 0.1465 | 0.0580 |
| No log        | 30.0  | 210  | 0.5532          | 0.795    | 0.2892     | 1.5724 | 0.795    | 0.7790   | 0.1453 | 0.0576 |
| No log        | 31.0  | 217  | 0.5050          | 0.835    | 0.2685     | 1.4206 | 0.835    | 0.8221   | 0.1459 | 0.0549 |
| No log        | 32.0  | 224  | 0.5067          | 0.82     | 0.2762     | 1.4460 | 0.82     | 0.8017   | 0.1494 | 0.0538 |
| No log        | 33.0  | 231  | 0.5200          | 0.815    | 0.2798     | 1.5300 | 0.815    | 0.7973   | 0.1442 | 0.0541 |
| No log        | 34.0  | 238  | 0.5110          | 0.825    | 0.2802     | 1.6009 | 0.825    | 0.8095   | 0.1462 | 0.0537 |
| No log        | 35.0  | 245  | 0.5125          | 0.815    | 0.2804     | 1.5209 | 0.815    | 0.8013   | 0.1555 | 0.0540 |
| No log        | 36.0  | 252  | 0.4981          | 0.82     | 0.2728     | 1.4498 | 0.82     | 0.8032   | 0.1557 | 0.0522 |
| No log        | 37.0  | 259  | 0.5196          | 0.82     | 0.2796     | 1.5297 | 0.82     | 0.8057   | 0.1396 | 0.0523 |
| No log        | 38.0  | 266  | 0.5034          | 0.82     | 0.2755     | 1.4577 | 0.82     | 0.8000   | 0.1449 | 0.0524 |
| No log        | 39.0  | 273  | 0.5190          | 0.815    | 0.2810     | 1.5240 | 0.815    | 0.8003   | 0.1516 | 0.0533 |
| No log        | 40.0  | 280  | 0.4926          | 0.83     | 0.2697     | 1.4598 | 0.83     | 0.8161   | 0.1248 | 0.0514 |
| No log        | 41.0  | 287  | 0.5117          | 0.815    | 0.2808     | 1.5168 | 0.815    | 0.7965   | 0.1306 | 0.0525 |
| No log        | 42.0  | 294  | 0.5034          | 0.825    | 0.2721     | 1.5263 | 0.825    | 0.8143   | 0.1389 | 0.0533 |
| No log        | 43.0  | 301  | 0.5073          | 0.815    | 0.2762     | 1.5308 | 0.815    | 0.7916   | 0.1452 | 0.0511 |
| No log        | 44.0  | 308  | 0.5017          | 0.825    | 0.2751     | 1.5202 | 0.825    | 0.8095   | 0.1473 | 0.0525 |
| No log        | 45.0  | 315  | 0.5052          | 0.815    | 0.2783     | 1.5143 | 0.815    | 0.7965   | 0.1451 | 0.0525 |
| No log        | 46.0  | 322  | 0.5043          | 0.83     | 0.2743     | 1.5172 | 0.83     | 0.8172   | 0.1481 | 0.0517 |
| No log        | 47.0  | 329  | 0.5057          | 0.825    | 0.2767     | 1.5164 | 0.825    | 0.8089   | 0.1325 | 0.0520 |
| No log        | 48.0  | 336  | 0.5033          | 0.82     | 0.2752     | 1.5168 | 0.82     | 0.8061   | 0.1430 | 0.0523 |
| No log        | 49.0  | 343  | 0.5042          | 0.82     | 0.2755     | 1.5163 | 0.82     | 0.8061   | 0.1394 | 0.0517 |
| No log        | 50.0  | 350  | 0.5068          | 0.82     | 0.2767     | 1.5153 | 0.82     | 0.8061   | 0.1471 | 0.0517 |
| No log        | 51.0  | 357  | 0.5048          | 0.82     | 0.2759     | 1.5137 | 0.82     | 0.8061   | 0.1419 | 0.0519 |
| No log        | 52.0  | 364  | 0.5044          | 0.825    | 0.2759     | 1.5112 | 0.825    | 0.8064   | 0.1342 | 0.0518 |
| No log        | 53.0  | 371  | 0.5046          | 0.825    | 0.2756     | 1.5122 | 0.825    | 0.8116   | 0.1388 | 0.0514 |
| No log        | 54.0  | 378  | 0.5078          | 0.815    | 0.2777     | 1.5111 | 0.815    | 0.7984   | 0.1442 | 0.0519 |
| No log        | 55.0  | 385  | 0.5059          | 0.815    | 0.2767     | 1.5109 | 0.815    | 0.7984   | 0.1351 | 0.0518 |
| No log        | 56.0  | 392  | 0.5087          | 0.82     | 0.2779     | 1.5089 | 0.82     | 0.8061   | 0.1391 | 0.0518 |
| No log        | 57.0  | 399  | 0.5072          | 0.82     | 0.2771     | 1.5094 | 0.82     | 0.8061   | 0.1339 | 0.0517 |
| No log        | 58.0  | 406  | 0.5079          | 0.82     | 0.2776     | 1.5074 | 0.82     | 0.8061   | 0.1366 | 0.0518 |
| No log        | 59.0  | 413  | 0.5072          | 0.82     | 0.2771     | 1.5072 | 0.82     | 0.8061   | 0.1308 | 0.0518 |
| No log        | 60.0  | 420  | 0.5084          | 0.825    | 0.2776     | 1.5059 | 0.825    | 0.8116   | 0.1303 | 0.0520 |
| No log        | 61.0  | 427  | 0.5074          | 0.82     | 0.2772     | 1.5066 | 0.82     | 0.8038   | 0.1244 | 0.0520 |
| No log        | 62.0  | 434  | 0.5090          | 0.82     | 0.2781     | 1.5053 | 0.82     | 0.8061   | 0.1367 | 0.0519 |
| No log        | 63.0  | 441  | 0.5094          | 0.825    | 0.2779     | 1.5050 | 0.825    | 0.8116   | 0.1305 | 0.0520 |
| No log        | 64.0  | 448  | 0.5098          | 0.82     | 0.2782     | 1.5049 | 0.82     | 0.8038   | 0.1314 | 0.0520 |
| No log        | 65.0  | 455  | 0.5086          | 0.82     | 0.2780     | 1.5038 | 0.82     | 0.8038   | 0.1249 | 0.0520 |
| No log        | 66.0  | 462  | 0.5103          | 0.82     | 0.2787     | 1.5023 | 0.82     | 0.8038   | 0.1222 | 0.0522 |
| No log        | 67.0  | 469  | 0.5095          | 0.82     | 0.2782     | 1.5025 | 0.82     | 0.8038   | 0.1228 | 0.0521 |
| No log        | 68.0  | 476  | 0.5095          | 0.82     | 0.2783     | 1.5027 | 0.82     | 0.8038   | 0.1330 | 0.0522 |
| No log        | 69.0  | 483  | 0.5097          | 0.82     | 0.2785     | 1.5015 | 0.82     | 0.8038   | 0.1228 | 0.0521 |
| No log        | 70.0  | 490  | 0.5109          | 0.82     | 0.2788     | 1.5005 | 0.82     | 0.8038   | 0.1322 | 0.0520 |
| No log        | 71.0  | 497  | 0.5096          | 0.82     | 0.2784     | 1.5012 | 0.82     | 0.8038   | 0.1320 | 0.0522 |
| 0.1366        | 72.0  | 504  | 0.5095          | 0.82     | 0.2784     | 1.5011 | 0.82     | 0.8038   | 0.1219 | 0.0522 |
| 0.1366        | 73.0  | 511  | 0.5109          | 0.82     | 0.2791     | 1.4998 | 0.82     | 0.8038   | 0.1249 | 0.0523 |
| 0.1366        | 74.0  | 518  | 0.5100          | 0.82     | 0.2786     | 1.5000 | 0.82     | 0.8038   | 0.1219 | 0.0521 |
| 0.1366        | 75.0  | 525  | 0.5096          | 0.82     | 0.2784     | 1.5000 | 0.82     | 0.8038   | 0.1238 | 0.0521 |
| 0.1366        | 76.0  | 532  | 0.5104          | 0.82     | 0.2787     | 1.4988 | 0.82     | 0.8038   | 0.1341 | 0.0523 |
| 0.1366        | 77.0  | 539  | 0.5105          | 0.82     | 0.2788     | 1.4985 | 0.82     | 0.8038   | 0.1340 | 0.0521 |
| 0.1366        | 78.0  | 546  | 0.5103          | 0.82     | 0.2788     | 1.4985 | 0.82     | 0.8038   | 0.1338 | 0.0520 |
| 0.1366        | 79.0  | 553  | 0.5105          | 0.82     | 0.2788     | 1.4983 | 0.82     | 0.8038   | 0.1317 | 0.0522 |
| 0.1366        | 80.0  | 560  | 0.5106          | 0.82     | 0.2789     | 1.4977 | 0.82     | 0.8038   | 0.1337 | 0.0523 |
| 0.1366        | 81.0  | 567  | 0.5108          | 0.82     | 0.2790     | 1.4971 | 0.82     | 0.8038   | 0.1339 | 0.0523 |
| 0.1366        | 82.0  | 574  | 0.5107          | 0.82     | 0.2790     | 1.4970 | 0.82     | 0.8038   | 0.1317 | 0.0521 |
| 0.1366        | 83.0  | 581  | 0.5108          | 0.82     | 0.2790     | 1.4968 | 0.82     | 0.8038   | 0.1339 | 0.0522 |
| 0.1366        | 84.0  | 588  | 0.5105          | 0.82     | 0.2789     | 1.4966 | 0.82     | 0.8038   | 0.1340 | 0.0522 |
| 0.1366        | 85.0  | 595  | 0.5106          | 0.82     | 0.2789     | 1.4961 | 0.82     | 0.8038   | 0.1338 | 0.0523 |
| 0.1366        | 86.0  | 602  | 0.5109          | 0.82     | 0.2790     | 1.4958 | 0.82     | 0.8038   | 0.1336 | 0.0524 |
| 0.1366        | 87.0  | 609  | 0.5105          | 0.815    | 0.2789     | 1.4956 | 0.815    | 0.7942   | 0.1290 | 0.0525 |
| 0.1366        | 88.0  | 616  | 0.5105          | 0.815    | 0.2790     | 1.4954 | 0.815    | 0.7942   | 0.1290 | 0.0525 |
| 0.1366        | 89.0  | 623  | 0.5106          | 0.815    | 0.2790     | 1.4952 | 0.815    | 0.7942   | 0.1290 | 0.0526 |
| 0.1366        | 90.0  | 630  | 0.5106          | 0.82     | 0.2790     | 1.4951 | 0.82     | 0.8038   | 0.1338 | 0.0523 |
| 0.1366        | 91.0  | 637  | 0.5107          | 0.815    | 0.2790     | 1.4949 | 0.815    | 0.7942   | 0.1289 | 0.0526 |
| 0.1366        | 92.0  | 644  | 0.5107          | 0.815    | 0.2790     | 1.4947 | 0.815    | 0.7942   | 0.1289 | 0.0526 |
| 0.1366        | 93.0  | 651  | 0.5107          | 0.815    | 0.2790     | 1.4947 | 0.815    | 0.7942   | 0.1289 | 0.0525 |
| 0.1366        | 94.0  | 658  | 0.5107          | 0.82     | 0.2790     | 1.4946 | 0.82     | 0.8038   | 0.1335 | 0.0523 |
| 0.1366        | 95.0  | 665  | 0.5106          | 0.82     | 0.2790     | 1.4946 | 0.82     | 0.8038   | 0.1335 | 0.0523 |
| 0.1366        | 96.0  | 672  | 0.5105          | 0.815    | 0.2790     | 1.4945 | 0.815    | 0.7942   | 0.1289 | 0.0524 |
| 0.1366        | 97.0  | 679  | 0.5105          | 0.815    | 0.2790     | 1.4945 | 0.815    | 0.7942   | 0.1289 | 0.0524 |
| 0.1366        | 98.0  | 686  | 0.5105          | 0.815    | 0.2790     | 1.4944 | 0.815    | 0.7942   | 0.1289 | 0.0524 |
| 0.1366        | 99.0  | 693  | 0.5105          | 0.815    | 0.2790     | 1.4944 | 0.815    | 0.7942   | 0.1287 | 0.0524 |
| 0.1366        | 100.0 | 700  | 0.5105          | 0.815    | 0.2790     | 1.4944 | 0.815    | 0.7942   | 0.1287 | 0.0524 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1