File size: 2,168 Bytes
6d40f37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- udpos28
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: udpos28-sm-all-POS
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: udpos28
type: udpos28
args: en
metrics:
- name: Precision
type: precision
value: 0.9586517032792105
- name: Recall
type: recall
value: 0.9588997472284696
- name: F1
type: f1
value: 0.9587757092110369
- name: Accuracy
type: accuracy
value: 0.964820639556654
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# udpos28-sm-all-POS
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the udpos28 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1479
- Precision: 0.9587
- Recall: 0.9589
- F1: 0.9588
- Accuracy: 0.9648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1261 | 1.0 | 4978 | 0.1358 | 0.9513 | 0.9510 | 0.9512 | 0.9581 |
| 0.0788 | 2.0 | 9956 | 0.1326 | 0.9578 | 0.9578 | 0.9578 | 0.9642 |
| 0.0424 | 3.0 | 14934 | 0.1479 | 0.9587 | 0.9589 | 0.9588 | 0.9648 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.2+cu102
- Datasets 2.2.2
- Tokenizers 0.12.1
|