File size: 2,168 Bytes
6d40f37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- udpos28
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: udpos28-sm-all-POS
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: udpos28
      type: udpos28
      args: en
    metrics:
    - name: Precision
      type: precision
      value: 0.9586517032792105
    - name: Recall
      type: recall
      value: 0.9588997472284696
    - name: F1
      type: f1
      value: 0.9587757092110369
    - name: Accuracy
      type: accuracy
      value: 0.964820639556654
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# udpos28-sm-all-POS

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the udpos28 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1479
- Precision: 0.9587
- Recall: 0.9589
- F1: 0.9588
- Accuracy: 0.9648

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1261        | 1.0   | 4978  | 0.1358          | 0.9513    | 0.9510 | 0.9512 | 0.9581   |
| 0.0788        | 2.0   | 9956  | 0.1326          | 0.9578    | 0.9578 | 0.9578 | 0.9642   |
| 0.0424        | 3.0   | 14934 | 0.1479          | 0.9587    | 0.9589 | 0.9588 | 0.9648   |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.2+cu102
- Datasets 2.2.2
- Tokenizers 0.12.1