--- license: apache-2.0 tags: - generated_from_trainer datasets: - udpos28 metrics: - precision - recall - f1 - accuracy model-index: - name: udpos28-sm-all-POS results: - task: name: Token Classification type: token-classification dataset: name: udpos28 type: udpos28 args: en metrics: - name: Precision type: precision value: 0.9586517032792105 - name: Recall type: recall value: 0.9588997472284696 - name: F1 type: f1 value: 0.9587757092110369 - name: Accuracy type: accuracy value: 0.964820639556654 --- # udpos28-sm-all-POS This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the udpos28 dataset. It achieves the following results on the evaluation set: - Loss: 0.1479 - Precision: 0.9587 - Recall: 0.9589 - F1: 0.9588 - Accuracy: 0.9648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1261 | 1.0 | 4978 | 0.1358 | 0.9513 | 0.9510 | 0.9512 | 0.9581 | | 0.0788 | 2.0 | 9956 | 0.1326 | 0.9578 | 0.9578 | 0.9578 | 0.9642 | | 0.0424 | 3.0 | 14934 | 0.1479 | 0.9587 | 0.9589 | 0.9588 | 0.9648 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1