---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: mistral-7B-Tinybook-epochs-5-lr-0002
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: utrgvseniorproject/Tinybook
type: completion
dataset_prepared_path: /home/josegomez15/med-llm/last_run_prepared
val_set_size: 0.05
output_dir: ./mistral-7B-Tinybook-epochs-5-lr-0002
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
wandb_project: mistral-7B-Tinybook
wandb_entity: utrgvmedai
wandb_watch:
wandb_name: mistral-7B-Tinybook-epochs-6-lr-0002
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 6
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: True # make sure you have this on True
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
eval_sample_packing:
saves_per_epoch: 1
debug:
deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
```
# mistral-7B-Tinybook-epochs-5-lr-0002
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2972
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4261 | 1.0 | 1 | 1.5358 |
| 1.4254 | 2.0 | 2 | 1.5169 |
| 1.3801 | 3.0 | 3 | 1.4326 |
| 1.1051 | 4.0 | 4 | 1.5059 |
| 0.9669 | 5.0 | 5 | 1.3067 |
| 0.7256 | 6.0 | 6 | 1.2972 |
### Framework versions
- Transformers 4.38.0
- Pytorch 2.0.1+cu117
- Datasets 2.17.0
- Tokenizers 0.15.0