End of training
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
- Accuracy: 0.85
|
37 |
|
38 |
## Model description
|
@@ -53,31 +53,30 @@ More information needed
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 5e-05
|
56 |
-
- train_batch_size:
|
57 |
-
- eval_batch_size:
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 2.
|
69 |
-
| 1.
|
70 |
-
|
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.0122 | 11.0 | 1419 | 0.6341 | 0.85 |
|
79 |
-
| 0.0119 | 12.0 | 1548 | 0.6671 | 0.84 |
|
80 |
-
| 0.0107 | 13.0 | 1677 | 0.6540 | 0.85 |
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5534
|
36 |
- Accuracy: 0.85
|
37 |
|
38 |
## Model description
|
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 4
|
57 |
+
- eval_batch_size: 4
|
58 |
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 8
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 10
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.0235 | 1.0 | 112 | 1.8164 | 0.52 |
|
71 |
+
| 1.3943 | 2.0 | 225 | 1.2865 | 0.65 |
|
72 |
+
| 0.9238 | 3.0 | 337 | 0.9596 | 0.76 |
|
73 |
+
| 0.7587 | 4.0 | 450 | 0.8548 | 0.79 |
|
74 |
+
| 0.5283 | 5.0 | 562 | 0.7655 | 0.82 |
|
75 |
+
| 0.2717 | 6.0 | 675 | 0.6910 | 0.79 |
|
76 |
+
| 0.2399 | 7.0 | 787 | 0.6660 | 0.83 |
|
77 |
+
| 0.2417 | 8.0 | 900 | 0.5973 | 0.84 |
|
78 |
+
| 0.3339 | 9.0 | 1012 | 0.5669 | 0.84 |
|
79 |
+
| 0.1585 | 9.96 | 1120 | 0.5534 | 0.85 |
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|