--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6540 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.036 | 1.0 | 129 | 1.8621 | 0.54 | | 1.272 | 2.0 | 258 | 1.2237 | 0.67 | | 1.1092 | 3.0 | 387 | 0.9957 | 0.67 | | 0.5955 | 4.0 | 516 | 0.8160 | 0.72 | | 0.3345 | 5.0 | 645 | 0.6607 | 0.79 | | 0.3451 | 6.0 | 774 | 0.7320 | 0.75 | | 0.2405 | 7.0 | 903 | 0.4956 | 0.85 | | 0.2242 | 8.0 | 1032 | 0.6112 | 0.81 | | 0.0447 | 9.0 | 1161 | 0.6542 | 0.82 | | 0.0194 | 10.0 | 1290 | 0.7455 | 0.84 | | 0.0122 | 11.0 | 1419 | 0.6341 | 0.85 | | 0.0119 | 12.0 | 1548 | 0.6671 | 0.84 | | 0.0107 | 13.0 | 1677 | 0.6540 | 0.85 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3