File size: 32,378 Bytes
6a810b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Fig. 8. The accuracy of instruct-GPT series models of different
    sizes (left to right, small to large). Larger model doing better on binary classification
    of answerable and unanswerable questions in SelfAware eval. (Image source: Yin
    et al. 2023)

    Another way to assess the model’s awareness of unknown knowledge is to measure
    the model’s output uncertainty. When a question is in-between known and unknown,
    the model is expected to demonstrate the right level of confidence.

    The experiment by Kadavath et al. (2022) showed that LLMs are shown to be well
    calibrated in their estimation probabilities of answer correctness on diverse
    multiple choice questions in a format with visible lettered answer options (MMLU,
    TruthfulQA, QuALITY, LogiQA), meaning that the predicted probability coincides
    with the frequency of that answer being true. RLHF fine-tuning makes the model
    poorly calibrated, but higher sampling temperature leads to better calibration
    results.'
  sentences:
  - What effect does the slower acquisition of new knowledge compared to established
    knowledge have on the effectiveness of large language models in practical scenarios?
  - How do discrepancies identified during the final output review phase affect the
    overall quality of the generated responses?
  - What effect does reinforcement learning from human feedback (RLHF) fine-tuning
    have on how well large language models assess the accuracy of their answers?
- source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based
    on how likely the model outputs correct answers. (Image source: Gekhman et al.
    2024)

    Some interesting observations of the experiments, where dev set accuracy is considered
    a proxy for hallucinations.


    Unknown examples are fitted substantially slower than Known.

    The best dev performance is obtained when the LLM fits the majority of the Known
    training examples but only a few of the Unknown ones. The model starts to hallucinate
    when it learns most of the Unknown examples.

    Among Known examples, MaybeKnown cases result in better overall performance, more
    essential than HighlyKnown ones.'
  sentences:
  - What is the relationship between the structural formatting of inquiries and the
    occurrence of calibration errors in artificial intelligence models, and in what
    ways can this understanding contribute to the optimization of model training processes?
  - What are the benefits of integrating a pretrained Natural Language Inference (NLI)
    model with MPNet when assessing the reliability of reasoning paths in knowledge
    retrieval?
  - In what ways do the classifications of Known versus Unknown examples influence
    the propensity of AI models to generate hallucinations during their training processes?
- source_sentence: 'Fig. 3. The evaluation framework for the FactualityPrompt benchmark.(Image
    source: Lee, et al. 2022)

    Given the model continuation and paired Wikipedia text, two evaluation metrics
    for hallucination are considered:


    Hallucination NE (Named Entity) errors: Using a pretrained entity detection model
    and document-level grounding, this metric measures the fraction of detected named
    entities that do not appear in the ground truth document.

    Entailment ratios: Using a RoBERTa model fine-tuned on MNLI and sentence-level
    knowledge grounding, this metric calculates the fraction of generated sentences
    that are marked as relevant to the paired Wikipedia sentence by the entailment
    model.'
  sentences:
  - What impact does the implementation of a pretrained query-document relevance model
    have on the process of document selection in research methodologies?
  - In what ways does the sequence in which information is delivered in AI-generated
    responses influence the likelihood of generating inaccuracies or hallucinations?
  - In what ways does the FactualityPrompt benchmark assess the performance of named
    entity detection models, particularly in relation to errors arising from hallucinated
    named entities?
- source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based
    on how likely the model outputs correct answers. (Image source: Gekhman et al.
    2024)

    Some interesting observations of the experiments, where dev set accuracy is considered
    a proxy for hallucinations.


    Unknown examples are fitted substantially slower than Known.

    The best dev performance is obtained when the LLM fits the majority of the Known
    training examples but only a few of the Unknown ones. The model starts to hallucinate
    when it learns most of the Unknown examples.

    Among Known examples, MaybeKnown cases result in better overall performance, more
    essential than HighlyKnown ones.'
  sentences:
  - In what ways does the inherently adversarial structure of TruthfulQA inquiries
    facilitate the detection of prevalent fallacies in human cognitive processes,
    and what implications does this have for understanding the constraints of expansive
    language models?
  - In what ways do MaybeKnown cases influence the performance of a model when contrasted
    with HighlyKnown examples, particularly in relation to the occurrence of hallucinations?
  - In what ways does the Self-RAG framework leverage reflection tokens to enhance
    the quality of its generated outputs, and what implications does this have for
    the overall generation process?
- source_sentence: 'Fine-tuning New Knowledge#

    Fine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a common
    technique for improving certain capabilities of the model like instruction following.
    Introducing new knowledge at the fine-tuning stage is hard to avoid.

    Fine-tuning usually consumes much less compute, making it debatable whether the
    model can reliably learn new knowledge via small-scale fine-tuning. Gekhman et
    al. 2024 studied the research question of whether fine-tuning LLMs on new knowledge
    encourages hallucinations. They found that (1) LLMs learn fine-tuning examples
    with new knowledge slower than other examples with knowledge consistent with the
    pre-existing knowledge of the model; (2) Once the examples with new knowledge
    are eventually learned, they increase the model’s tendency to hallucinate.'
  sentences:
  - How does the IsRel token function in the retrieval process, and what impact does
    it have on the relevance of generated content to reduce hallucination?
  - What is the relationship between the calibration of AI models and the effectiveness
    of verbalized probabilities when applied to tasks of varying difficulty levels?
  - How do the results presented by Gekhman et al. in their 2024 study inform our
    understanding of the reliability metrics associated with large language models
    (LLMs) when subjected to fine-tuning with novel datasets?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.828125
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9635416666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9739583333333334
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9947916666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.828125
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3211805555555556
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1947916666666666
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09947916666666667
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.828125
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9635416666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9739583333333334
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9947916666666666
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9220150687007592
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8976707175925925
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8981047453703703
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.8020833333333334
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9635416666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9739583333333334
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9895833333333334
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8020833333333334
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3211805555555556
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1947916666666666
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09895833333333333
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8020833333333334
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9635416666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9739583333333334
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9895833333333334
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9077325270335209
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.880220734126984
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8810414411976911
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.796875
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9583333333333334
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.96875
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9791666666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.796875
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3194444444444445
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19374999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09791666666666665
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.796875
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9583333333333334
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.96875
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9791666666666666
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9011377823848584
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8746155753968253
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8757564484126984
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7864583333333334
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9322916666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9635416666666666
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9635416666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7864583333333334
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3107638888888889
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19270833333333334
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09635416666666667
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7864583333333334
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9322916666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9635416666666666
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9635416666666666
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.888061438431803
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8623263888888889
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8647421480429293
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6875
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8645833333333334
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9270833333333334
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.96875
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6875
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2881944444444445
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18541666666666665
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09687499999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6875
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8645833333333334
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9270833333333334
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.96875
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8335872598831777
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7895895337301586
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7917890681938919
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-100")
# Run inference
sentences = [
    'Fine-tuning New Knowledge#\nFine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a common technique for improving certain capabilities of the model like instruction following. Introducing new knowledge at the fine-tuning stage is hard to avoid.\nFine-tuning usually consumes much less compute, making it debatable whether the model can reliably learn new knowledge via small-scale fine-tuning. Gekhman et al. 2024 studied the research question of whether fine-tuning LLMs on new knowledge encourages hallucinations. They found that (1) LLMs learn fine-tuning examples with new knowledge slower than other examples with knowledge consistent with the pre-existing knowledge of the model; (2) Once the examples with new knowledge are eventually learned, they increase the model’s tendency to hallucinate.',
    'How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets?',
    'What is the relationship between the calibration of AI models and the effectiveness of verbalized probabilities when applied to tasks of varying difficulty levels?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8281     |
| cosine_accuracy@3   | 0.9635     |
| cosine_accuracy@5   | 0.974      |
| cosine_accuracy@10  | 0.9948     |
| cosine_precision@1  | 0.8281     |
| cosine_precision@3  | 0.3212     |
| cosine_precision@5  | 0.1948     |
| cosine_precision@10 | 0.0995     |
| cosine_recall@1     | 0.8281     |
| cosine_recall@3     | 0.9635     |
| cosine_recall@5     | 0.974      |
| cosine_recall@10    | 0.9948     |
| cosine_ndcg@10      | 0.922      |
| cosine_mrr@10       | 0.8977     |
| **cosine_map@100**  | **0.8981** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.8021    |
| cosine_accuracy@3   | 0.9635    |
| cosine_accuracy@5   | 0.974     |
| cosine_accuracy@10  | 0.9896    |
| cosine_precision@1  | 0.8021    |
| cosine_precision@3  | 0.3212    |
| cosine_precision@5  | 0.1948    |
| cosine_precision@10 | 0.099     |
| cosine_recall@1     | 0.8021    |
| cosine_recall@3     | 0.9635    |
| cosine_recall@5     | 0.974     |
| cosine_recall@10    | 0.9896    |
| cosine_ndcg@10      | 0.9077    |
| cosine_mrr@10       | 0.8802    |
| **cosine_map@100**  | **0.881** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7969     |
| cosine_accuracy@3   | 0.9583     |
| cosine_accuracy@5   | 0.9688     |
| cosine_accuracy@10  | 0.9792     |
| cosine_precision@1  | 0.7969     |
| cosine_precision@3  | 0.3194     |
| cosine_precision@5  | 0.1937     |
| cosine_precision@10 | 0.0979     |
| cosine_recall@1     | 0.7969     |
| cosine_recall@3     | 0.9583     |
| cosine_recall@5     | 0.9688     |
| cosine_recall@10    | 0.9792     |
| cosine_ndcg@10      | 0.9011     |
| cosine_mrr@10       | 0.8746     |
| **cosine_map@100**  | **0.8758** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7865     |
| cosine_accuracy@3   | 0.9323     |
| cosine_accuracy@5   | 0.9635     |
| cosine_accuracy@10  | 0.9635     |
| cosine_precision@1  | 0.7865     |
| cosine_precision@3  | 0.3108     |
| cosine_precision@5  | 0.1927     |
| cosine_precision@10 | 0.0964     |
| cosine_recall@1     | 0.7865     |
| cosine_recall@3     | 0.9323     |
| cosine_recall@5     | 0.9635     |
| cosine_recall@10    | 0.9635     |
| cosine_ndcg@10      | 0.8881     |
| cosine_mrr@10       | 0.8623     |
| **cosine_map@100**  | **0.8647** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6875     |
| cosine_accuracy@3   | 0.8646     |
| cosine_accuracy@5   | 0.9271     |
| cosine_accuracy@10  | 0.9688     |
| cosine_precision@1  | 0.6875     |
| cosine_precision@3  | 0.2882     |
| cosine_precision@5  | 0.1854     |
| cosine_precision@10 | 0.0969     |
| cosine_recall@1     | 0.6875     |
| cosine_recall@3     | 0.8646     |
| cosine_recall@5     | 0.9271     |
| cosine_recall@10    | 0.9688     |
| cosine_ndcg@10      | 0.8336     |
| cosine_mrr@10       | 0.7896     |
| **cosine_map@100**  | **0.7918** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.3846  | 5      | 5.0472        | -                      | -                      | -                      | -                     | -                      |
| 0.7692  | 10     | 4.0023        | -                      | -                      | -                      | -                     | -                      |
| 1.0     | 13     | -             | 0.7939                 | 0.8135                 | 0.8282                 | 0.7207                | 0.8323                 |
| 1.1538  | 15     | 2.3381        | -                      | -                      | -                      | -                     | -                      |
| 1.5385  | 20     | 3.4302        | -                      | -                      | -                      | -                     | -                      |
| 1.9231  | 25     | 2.08          | -                      | -                      | -                      | -                     | -                      |
| 2.0     | 26     | -             | 0.8494                 | 0.8681                 | 0.8781                 | 0.7959                | 0.8888                 |
| 2.3077  | 30     | 1.4696        | -                      | -                      | -                      | -                     | -                      |
| 2.6923  | 35     | 1.8153        | -                      | -                      | -                      | -                     | -                      |
| **3.0** | **39** | **-**         | **0.8641**             | **0.8844**             | **0.8924**             | **0.7952**            | **0.8997**             |
| 3.0769  | 40     | 1.3498        | -                      | -                      | -                      | -                     | -                      |
| 3.4615  | 45     | 0.9135        | -                      | -                      | -                      | -                     | -                      |
| 3.8462  | 50     | 1.3996        | -                      | -                      | -                      | -                     | -                      |
| 4.0     | 52     | -             | 0.8647                 | 0.8775                 | 0.8819                 | 0.7896                | 0.8990                 |
| 4.2308  | 55     | 1.1582        | -                      | -                      | -                      | -                     | -                      |
| 4.6154  | 60     | 1.2233        | -                      | -                      | -                      | -                     | -                      |
| 5.0     | 65     | 0.9757        | 0.8647                 | 0.8758                 | 0.8810                 | 0.7918                | 0.8981                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->