|
--- |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:100 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 'Fig. 8. The accuracy of instruct-GPT series models of different |
|
sizes (left to right, small to large). Larger model doing better on binary classification |
|
of answerable and unanswerable questions in SelfAware eval. (Image source: Yin |
|
et al. 2023) |
|
|
|
Another way to assess the model’s awareness of unknown knowledge is to measure |
|
the model’s output uncertainty. When a question is in-between known and unknown, |
|
the model is expected to demonstrate the right level of confidence. |
|
|
|
The experiment by Kadavath et al. (2022) showed that LLMs are shown to be well |
|
calibrated in their estimation probabilities of answer correctness on diverse |
|
multiple choice questions in a format with visible lettered answer options (MMLU, |
|
TruthfulQA, QuALITY, LogiQA), meaning that the predicted probability coincides |
|
with the frequency of that answer being true. RLHF fine-tuning makes the model |
|
poorly calibrated, but higher sampling temperature leads to better calibration |
|
results.' |
|
sentences: |
|
- What effect does the slower acquisition of new knowledge compared to established |
|
knowledge have on the effectiveness of large language models in practical scenarios? |
|
- How do discrepancies identified during the final output review phase affect the |
|
overall quality of the generated responses? |
|
- What effect does reinforcement learning from human feedback (RLHF) fine-tuning |
|
have on how well large language models assess the accuracy of their answers? |
|
- source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based |
|
on how likely the model outputs correct answers. (Image source: Gekhman et al. |
|
2024) |
|
|
|
Some interesting observations of the experiments, where dev set accuracy is considered |
|
a proxy for hallucinations. |
|
|
|
|
|
Unknown examples are fitted substantially slower than Known. |
|
|
|
The best dev performance is obtained when the LLM fits the majority of the Known |
|
training examples but only a few of the Unknown ones. The model starts to hallucinate |
|
when it learns most of the Unknown examples. |
|
|
|
Among Known examples, MaybeKnown cases result in better overall performance, more |
|
essential than HighlyKnown ones.' |
|
sentences: |
|
- What is the relationship between the structural formatting of inquiries and the |
|
occurrence of calibration errors in artificial intelligence models, and in what |
|
ways can this understanding contribute to the optimization of model training processes? |
|
- What are the benefits of integrating a pretrained Natural Language Inference (NLI) |
|
model with MPNet when assessing the reliability of reasoning paths in knowledge |
|
retrieval? |
|
- In what ways do the classifications of Known versus Unknown examples influence |
|
the propensity of AI models to generate hallucinations during their training processes? |
|
- source_sentence: 'Fig. 3. The evaluation framework for the FactualityPrompt benchmark.(Image |
|
source: Lee, et al. 2022) |
|
|
|
Given the model continuation and paired Wikipedia text, two evaluation metrics |
|
for hallucination are considered: |
|
|
|
|
|
Hallucination NE (Named Entity) errors: Using a pretrained entity detection model |
|
and document-level grounding, this metric measures the fraction of detected named |
|
entities that do not appear in the ground truth document. |
|
|
|
Entailment ratios: Using a RoBERTa model fine-tuned on MNLI and sentence-level |
|
knowledge grounding, this metric calculates the fraction of generated sentences |
|
that are marked as relevant to the paired Wikipedia sentence by the entailment |
|
model.' |
|
sentences: |
|
- What impact does the implementation of a pretrained query-document relevance model |
|
have on the process of document selection in research methodologies? |
|
- In what ways does the sequence in which information is delivered in AI-generated |
|
responses influence the likelihood of generating inaccuracies or hallucinations? |
|
- In what ways does the FactualityPrompt benchmark assess the performance of named |
|
entity detection models, particularly in relation to errors arising from hallucinated |
|
named entities? |
|
- source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based |
|
on how likely the model outputs correct answers. (Image source: Gekhman et al. |
|
2024) |
|
|
|
Some interesting observations of the experiments, where dev set accuracy is considered |
|
a proxy for hallucinations. |
|
|
|
|
|
Unknown examples are fitted substantially slower than Known. |
|
|
|
The best dev performance is obtained when the LLM fits the majority of the Known |
|
training examples but only a few of the Unknown ones. The model starts to hallucinate |
|
when it learns most of the Unknown examples. |
|
|
|
Among Known examples, MaybeKnown cases result in better overall performance, more |
|
essential than HighlyKnown ones.' |
|
sentences: |
|
- In what ways does the inherently adversarial structure of TruthfulQA inquiries |
|
facilitate the detection of prevalent fallacies in human cognitive processes, |
|
and what implications does this have for understanding the constraints of expansive |
|
language models? |
|
- In what ways do MaybeKnown cases influence the performance of a model when contrasted |
|
with HighlyKnown examples, particularly in relation to the occurrence of hallucinations? |
|
- In what ways does the Self-RAG framework leverage reflection tokens to enhance |
|
the quality of its generated outputs, and what implications does this have for |
|
the overall generation process? |
|
- source_sentence: 'Fine-tuning New Knowledge# |
|
|
|
Fine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a common |
|
technique for improving certain capabilities of the model like instruction following. |
|
Introducing new knowledge at the fine-tuning stage is hard to avoid. |
|
|
|
Fine-tuning usually consumes much less compute, making it debatable whether the |
|
model can reliably learn new knowledge via small-scale fine-tuning. Gekhman et |
|
al. 2024 studied the research question of whether fine-tuning LLMs on new knowledge |
|
encourages hallucinations. They found that (1) LLMs learn fine-tuning examples |
|
with new knowledge slower than other examples with knowledge consistent with the |
|
pre-existing knowledge of the model; (2) Once the examples with new knowledge |
|
are eventually learned, they increase the model’s tendency to hallucinate.' |
|
sentences: |
|
- How does the IsRel token function in the retrieval process, and what impact does |
|
it have on the relevance of generated content to reduce hallucination? |
|
- What is the relationship between the calibration of AI models and the effectiveness |
|
of verbalized probabilities when applied to tasks of varying difficulty levels? |
|
- How do the results presented by Gekhman et al. in their 2024 study inform our |
|
understanding of the reliability metrics associated with large language models |
|
(LLMs) when subjected to fine-tuning with novel datasets? |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.828125 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9635416666666666 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9739583333333334 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9947916666666666 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.828125 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3211805555555556 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1947916666666666 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09947916666666667 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.828125 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9635416666666666 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9739583333333334 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9947916666666666 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9220150687007592 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8976707175925925 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8981047453703703 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8020833333333334 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9635416666666666 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9739583333333334 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9895833333333334 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8020833333333334 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3211805555555556 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1947916666666666 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09895833333333333 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8020833333333334 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9635416666666666 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9739583333333334 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9895833333333334 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9077325270335209 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.880220734126984 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8810414411976911 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.796875 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9583333333333334 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.96875 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9791666666666666 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.796875 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3194444444444445 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19374999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09791666666666665 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.796875 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9583333333333334 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.96875 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9791666666666666 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9011377823848584 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8746155753968253 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8757564484126984 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7864583333333334 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9322916666666666 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9635416666666666 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9635416666666666 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7864583333333334 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3107638888888889 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19270833333333334 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09635416666666667 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7864583333333334 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9322916666666666 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9635416666666666 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9635416666666666 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.888061438431803 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8623263888888889 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8647421480429293 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6875 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8645833333333334 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9270833333333334 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.96875 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6875 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2881944444444445 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.18541666666666665 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09687499999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6875 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8645833333333334 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9270833333333334 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.96875 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8335872598831777 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7895895337301586 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7917890681938919 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-100") |
|
# Run inference |
|
sentences = [ |
|
'Fine-tuning New Knowledge#\nFine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a common technique for improving certain capabilities of the model like instruction following. Introducing new knowledge at the fine-tuning stage is hard to avoid.\nFine-tuning usually consumes much less compute, making it debatable whether the model can reliably learn new knowledge via small-scale fine-tuning. Gekhman et al. 2024 studied the research question of whether fine-tuning LLMs on new knowledge encourages hallucinations. They found that (1) LLMs learn fine-tuning examples with new knowledge slower than other examples with knowledge consistent with the pre-existing knowledge of the model; (2) Once the examples with new knowledge are eventually learned, they increase the model’s tendency to hallucinate.', |
|
'How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets?', |
|
'What is the relationship between the calibration of AI models and the effectiveness of verbalized probabilities when applied to tasks of varying difficulty levels?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8281 | |
|
| cosine_accuracy@3 | 0.9635 | |
|
| cosine_accuracy@5 | 0.974 | |
|
| cosine_accuracy@10 | 0.9948 | |
|
| cosine_precision@1 | 0.8281 | |
|
| cosine_precision@3 | 0.3212 | |
|
| cosine_precision@5 | 0.1948 | |
|
| cosine_precision@10 | 0.0995 | |
|
| cosine_recall@1 | 0.8281 | |
|
| cosine_recall@3 | 0.9635 | |
|
| cosine_recall@5 | 0.974 | |
|
| cosine_recall@10 | 0.9948 | |
|
| cosine_ndcg@10 | 0.922 | |
|
| cosine_mrr@10 | 0.8977 | |
|
| **cosine_map@100** | **0.8981** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.8021 | |
|
| cosine_accuracy@3 | 0.9635 | |
|
| cosine_accuracy@5 | 0.974 | |
|
| cosine_accuracy@10 | 0.9896 | |
|
| cosine_precision@1 | 0.8021 | |
|
| cosine_precision@3 | 0.3212 | |
|
| cosine_precision@5 | 0.1948 | |
|
| cosine_precision@10 | 0.099 | |
|
| cosine_recall@1 | 0.8021 | |
|
| cosine_recall@3 | 0.9635 | |
|
| cosine_recall@5 | 0.974 | |
|
| cosine_recall@10 | 0.9896 | |
|
| cosine_ndcg@10 | 0.9077 | |
|
| cosine_mrr@10 | 0.8802 | |
|
| **cosine_map@100** | **0.881** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7969 | |
|
| cosine_accuracy@3 | 0.9583 | |
|
| cosine_accuracy@5 | 0.9688 | |
|
| cosine_accuracy@10 | 0.9792 | |
|
| cosine_precision@1 | 0.7969 | |
|
| cosine_precision@3 | 0.3194 | |
|
| cosine_precision@5 | 0.1937 | |
|
| cosine_precision@10 | 0.0979 | |
|
| cosine_recall@1 | 0.7969 | |
|
| cosine_recall@3 | 0.9583 | |
|
| cosine_recall@5 | 0.9688 | |
|
| cosine_recall@10 | 0.9792 | |
|
| cosine_ndcg@10 | 0.9011 | |
|
| cosine_mrr@10 | 0.8746 | |
|
| **cosine_map@100** | **0.8758** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7865 | |
|
| cosine_accuracy@3 | 0.9323 | |
|
| cosine_accuracy@5 | 0.9635 | |
|
| cosine_accuracy@10 | 0.9635 | |
|
| cosine_precision@1 | 0.7865 | |
|
| cosine_precision@3 | 0.3108 | |
|
| cosine_precision@5 | 0.1927 | |
|
| cosine_precision@10 | 0.0964 | |
|
| cosine_recall@1 | 0.7865 | |
|
| cosine_recall@3 | 0.9323 | |
|
| cosine_recall@5 | 0.9635 | |
|
| cosine_recall@10 | 0.9635 | |
|
| cosine_ndcg@10 | 0.8881 | |
|
| cosine_mrr@10 | 0.8623 | |
|
| **cosine_map@100** | **0.8647** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6875 | |
|
| cosine_accuracy@3 | 0.8646 | |
|
| cosine_accuracy@5 | 0.9271 | |
|
| cosine_accuracy@10 | 0.9688 | |
|
| cosine_precision@1 | 0.6875 | |
|
| cosine_precision@3 | 0.2882 | |
|
| cosine_precision@5 | 0.1854 | |
|
| cosine_precision@10 | 0.0969 | |
|
| cosine_recall@1 | 0.6875 | |
|
| cosine_recall@3 | 0.8646 | |
|
| cosine_recall@5 | 0.9271 | |
|
| cosine_recall@10 | 0.9688 | |
|
| cosine_ndcg@10 | 0.8336 | |
|
| cosine_mrr@10 | 0.7896 | |
|
| **cosine_map@100** | **0.7918** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.3846 | 5 | 5.0472 | - | - | - | - | - | |
|
| 0.7692 | 10 | 4.0023 | - | - | - | - | - | |
|
| 1.0 | 13 | - | 0.7939 | 0.8135 | 0.8282 | 0.7207 | 0.8323 | |
|
| 1.1538 | 15 | 2.3381 | - | - | - | - | - | |
|
| 1.5385 | 20 | 3.4302 | - | - | - | - | - | |
|
| 1.9231 | 25 | 2.08 | - | - | - | - | - | |
|
| 2.0 | 26 | - | 0.8494 | 0.8681 | 0.8781 | 0.7959 | 0.8888 | |
|
| 2.3077 | 30 | 1.4696 | - | - | - | - | - | |
|
| 2.6923 | 35 | 1.8153 | - | - | - | - | - | |
|
| **3.0** | **39** | **-** | **0.8641** | **0.8844** | **0.8924** | **0.7952** | **0.8997** | |
|
| 3.0769 | 40 | 1.3498 | - | - | - | - | - | |
|
| 3.4615 | 45 | 0.9135 | - | - | - | - | - | |
|
| 3.8462 | 50 | 1.3996 | - | - | - | - | - | |
|
| 4.0 | 52 | - | 0.8647 | 0.8775 | 0.8819 | 0.7896 | 0.8990 | |
|
| 4.2308 | 55 | 1.1582 | - | - | - | - | - | |
|
| 4.6154 | 60 | 1.2233 | - | - | - | - | - | |
|
| 5.0 | 65 | 0.9757 | 0.8647 | 0.8758 | 0.8810 | 0.7918 | 0.8981 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |