joshuasundance commited on
Commit
a4331d2
1 Parent(s): 9755e97

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: louder and the mouse didnt break:I wish the volume could be louder and the
13
+ mouse didnt break after only a month.
14
+ - text: + + (sales, service,:BEST BUY - 5 STARS + + + (sales, service, respect for
15
+ old men who aren't familiar with the technology) DELL COMPUTERS - 3 stars DELL
16
+ SUPPORT - owes a me a couple
17
+ - text: back and my built-in webcam and built-:I got it back and my built-in webcam
18
+ and built-in mic were shorting out anytime I touched the lid, (mind you this was
19
+ my means of communication with my fiance who was deployed) but I suffered thru
20
+ it and would constandly have to reset the computer to be able to use my cam and
21
+ mic anytime they went out.
22
+ - text: after i install Mozzilla firfox i love every:the only fact i dont like about
23
+ apples is they generally use safari and i dont use safari but after i install
24
+ Mozzilla firfox i love every single bit about it.
25
+ - text: in webcam and built-in mic were shorting out:I got it back and my built-in
26
+ webcam and built-in mic were shorting out anytime I touched the lid, (mind you
27
+ this was my means of communication with my fiance who was deployed) but I suffered
28
+ thru it and would constandly have to reset the computer to be able to use my cam
29
+ and mic anytime they went out.
30
+ pipeline_tag: text-classification
31
+ inference: false
32
+ base_model: sentence-transformers/all-mpnet-base-v2
33
+ model-index:
34
+ - name: SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
35
+ results:
36
+ - task:
37
+ type: text-classification
38
+ name: Text Classification
39
+ dataset:
40
+ name: Unknown
41
+ type: unknown
42
+ split: test
43
+ metrics:
44
+ - type: accuracy
45
+ value: 0.7007874015748031
46
+ name: Accuracy
47
+ ---
48
+
49
+ # SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
50
+
51
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
52
+
53
+ The model has been trained using an efficient few-shot learning technique that involves:
54
+
55
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
56
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
57
+
58
+ This model was trained within the context of a larger system for ABSA, which looks like so:
59
+
60
+ 1. Use a spaCy model to select possible aspect span candidates.
61
+ 2. Use a SetFit model to filter these possible aspect span candidates.
62
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
63
+
64
+ ## Model Details
65
+
66
+ ### Model Description
67
+ - **Model Type:** SetFit
68
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
69
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
70
+ - **spaCy Model:** en_core_web_sm
71
+ - **SetFitABSA Aspect Model:** [C:\Users\JOSHUA~1.BAI\AppData\Local\Temp\tmpquqitidc\joshuasundance\setfit-absa-all-mpnet-base-v2-laptops-aspect](https://huggingface.co/C:\Users\JOSHUA~1.BAI\AppData\Local\Temp\tmpquqitidc\joshuasundance\setfit-absa-all-mpnet-base-v2-laptops-aspect)
72
+ - **SetFitABSA Polarity Model:** [C:\Users\JOSHUA~1.BAI\AppData\Local\Temp\tmpquqitidc\joshuasundance\setfit-absa-all-mpnet-base-v2-laptops-polarity](https://huggingface.co/C:\Users\JOSHUA~1.BAI\AppData\Local\Temp\tmpquqitidc\joshuasundance\setfit-absa-all-mpnet-base-v2-laptops-polarity)
73
+ - **Maximum Sequence Length:** 384 tokens
74
+ - **Number of Classes:** 4 classes
75
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
76
+ <!-- - **Language:** Unknown -->
77
+ <!-- - **License:** Unknown -->
78
+
79
+ ### Model Sources
80
+
81
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
82
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
83
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
84
+
85
+ ### Model Labels
86
+ | Label | Examples |
87
+ |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
88
+ | neutral | <ul><li>'skip taking the cord with me because:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'The tech guy then said the:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'all dark, power light steady, hard:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> |
89
+ | positive | <ul><li>'of the good battery life.:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'is of high quality, has a:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li><li>'has a killer GUI, is extremely:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li></ul> |
90
+ | negative | <ul><li>'then said the service center does not do:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'concern to the "sales" team, which is:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'on, no GUI, screen all:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> |
91
+ | conflict | <ul><li>'-No backlit keyboard, but not:-No backlit keyboard, but not an issue for me.'</li><li>"to replace the battery once, but:I did have to replace the battery once, but that was only a couple months ago and it's been working perfect ever since."</li></ul> |
92
+
93
+ ## Evaluation
94
+
95
+ ### Metrics
96
+ | Label | Accuracy |
97
+ |:--------|:---------|
98
+ | **all** | 0.7008 |
99
+
100
+ ## Uses
101
+
102
+ ### Direct Use for Inference
103
+
104
+ First install the SetFit library:
105
+
106
+ ```bash
107
+ pip install setfit
108
+ ```
109
+
110
+ Then you can load this model and run inference.
111
+
112
+ ```python
113
+ from setfit import AbsaModel
114
+
115
+ # Download from the 🤗 Hub
116
+ model = AbsaModel.from_pretrained(
117
+ "C:\Users\JOSHUA~1.BAI\AppData\Local\Temp\tmpquqitidc\joshuasundance\setfit-absa-all-mpnet-base-v2-laptops-aspect",
118
+ "C:\Users\JOSHUA~1.BAI\AppData\Local\Temp\tmpquqitidc\joshuasundance\setfit-absa-all-mpnet-base-v2-laptops-polarity",
119
+ )
120
+ # Run inference
121
+ preds = model("The food was great, but the venue is just way too busy.")
122
+ ```
123
+
124
+ <!--
125
+ ### Downstream Use
126
+
127
+ *List how someone could finetune this model on their own dataset.*
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Set Metrics
151
+ | Training set | Min | Median | Max |
152
+ |:-------------|:----|:--------|:----|
153
+ | Word count | 3 | 25.5873 | 48 |
154
+
155
+ | Label | Training Sample Count |
156
+ |:---------|:----------------------|
157
+ | conflict | 2 |
158
+ | negative | 45 |
159
+ | neutral | 30 |
160
+ | positive | 49 |
161
+
162
+ ### Training Hyperparameters
163
+ - batch_size: (128, 128)
164
+ - num_epochs: (5, 5)
165
+ - max_steps: -1
166
+ - sampling_strategy: oversampling
167
+ - body_learning_rate: (2e-05, 1e-05)
168
+ - head_learning_rate: 0.01
169
+ - loss: CosineSimilarityLoss
170
+ - distance_metric: cosine_distance
171
+ - margin: 0.25
172
+ - end_to_end: False
173
+ - use_amp: True
174
+ - warmup_proportion: 0.1
175
+ - seed: 42
176
+ - eval_max_steps: -1
177
+ - load_best_model_at_end: True
178
+
179
+ ### Training Results
180
+ | Epoch | Step | Training Loss | Validation Loss |
181
+ |:----------:|:------:|:-------------:|:---------------:|
182
+ | 0.0120 | 1 | 0.2721 | - |
183
+ | **0.6024** | **50** | **0.0894** | **0.2059** |
184
+ | 1.2048 | 100 | 0.0014 | 0.2309 |
185
+ | 1.8072 | 150 | 0.0006 | 0.2359 |
186
+ | 2.4096 | 200 | 0.0005 | 0.2373 |
187
+ | 3.0120 | 250 | 0.0004 | 0.2364 |
188
+ | 3.6145 | 300 | 0.0003 | 0.2371 |
189
+
190
+ * The bold row denotes the saved checkpoint.
191
+ ### Framework Versions
192
+ - Python: 3.11.7
193
+ - SetFit: 1.0.3
194
+ - Sentence Transformers: 2.3.0
195
+ - spaCy: 3.7.2
196
+ - Transformers: 4.37.2
197
+ - PyTorch: 2.1.2+cu118
198
+ - Datasets: 2.16.1
199
+ - Tokenizers: 0.15.1
200
+
201
+ ## Citation
202
+
203
+ ### BibTeX
204
+ ```bibtex
205
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
206
+ doi = {10.48550/ARXIV.2209.11055},
207
+ url = {https://arxiv.org/abs/2209.11055},
208
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
209
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
210
+ title = {Efficient Few-Shot Learning Without Prompts},
211
+ publisher = {arXiv},
212
+ year = {2022},
213
+ copyright = {Creative Commons Attribution 4.0 International}
214
+ }
215
+ ```
216
+
217
+ <!--
218
+ ## Glossary
219
+
220
+ *Clearly define terms in order to be accessible across audiences.*
221
+ -->
222
+
223
+ <!--
224
+ ## Model Card Authors
225
+
226
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
227
+ -->
228
+
229
+ <!--
230
+ ## Model Card Contact
231
+
232
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
233
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models\\step_50",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.37.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "spacy_model": "en_core_web_sm",
3
+ "labels": [
4
+ "conflict",
5
+ "negative",
6
+ "neutral",
7
+ "positive"
8
+ ],
9
+ "normalize_embeddings": false,
10
+ "span_context": 3
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:044528001fa520cf8b424c5e6d3f59cdd18e4eb3c0ecd4f34ef59ffc491d8c75
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:997c8cb6395841b75b502d811d3151392313529db6da426d09843f0d25b78faf
3
+ size 25559
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff