Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,127 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- fr
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- french
|
9 |
+
- chocolatine
|
10 |
+
datasets:
|
11 |
+
- jpacifico/french-orca-dpo-pairs-revised
|
12 |
+
pipeline_tag: text-generation
|
13 |
---
|
14 |
|
15 |
+
### Chocolatine-14B-Instruct-4k-DPO
|
16 |
+
|
17 |
+
DPO fine-tuned of [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) (14B params)
|
18 |
+
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
|
19 |
+
Training in French also improves the model in English, surpassing the performances of its base model.
|
20 |
+
Window context = 4k tokens
|
21 |
+
|
22 |
+
### Benchmarks
|
23 |
+
|
24 |
+
Submitted on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (aug 2024)
|
25 |
+
Results coming soon.
|
26 |
+
|
27 |
+
### MT-Bench-French
|
28 |
+
|
29 |
+
Chocolatine-14B-Instruct-4k-DPO is outperforming GPT-3.5-Turbo and Phi-3-medium-4k-instruct on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french),
|
30 |
+
used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench)
|
31 |
+
|
32 |
+
```
|
33 |
+
########## First turn ##########
|
34 |
+
score
|
35 |
+
model turn
|
36 |
+
Chocolatine-14B-Instruct-4k-DPO 1 8.6375
|
37 |
+
Phi-3-medium-4k-instruct 1 8.2250
|
38 |
+
gpt-3.5-turbo 1 8.1375
|
39 |
+
Chocolatine-3B-Instruct-DPO-Revised 1 7.9875
|
40 |
+
Daredevil-8B 1 7.8875
|
41 |
+
Chocolatine-3B-Instruct-DPO-v1.0 1 7.6875
|
42 |
+
NeuralDaredevil-8B-abliterated 1 7.6250
|
43 |
+
Phi-3-mini-4k-instruct 1 7.2125
|
44 |
+
Meta-Llama-3-8B-Instruct 1 7.1625
|
45 |
+
vigostral-7b-chat 1 6.7875
|
46 |
+
Mistral-7B-Instruct-v0.3 1 6.7500
|
47 |
+
Mistral-7B-Instruct-v0.2 1 6.2875
|
48 |
+
|
49 |
+
########## Second turn ##########
|
50 |
+
score
|
51 |
+
model turn
|
52 |
+
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
|
53 |
+
Phi-3-medium-4k-instruct 2 7.750000
|
54 |
+
Chocolatine-14B-Instruct-4k-DPO 2 7.737500
|
55 |
+
gpt-3.5-turbo 2 7.679167
|
56 |
+
Chocolatine-3B-Instruct-DPO-v1.0 2 7.612500
|
57 |
+
NeuralDaredevil-8B-abliterated 2 7.125000
|
58 |
+
Daredevil-8B 2 7.087500
|
59 |
+
Meta-Llama-3-8B-Instruct 2 6.800000
|
60 |
+
Mistral-7B-Instruct-v0.2 2 6.512500
|
61 |
+
Mistral-7B-Instruct-v0.3 2 6.500000
|
62 |
+
Phi-3-mini-4k-instruct 2 6.487500
|
63 |
+
vigostral-7b-chat 2 6.162500
|
64 |
+
|
65 |
+
########## Average ##########
|
66 |
+
score
|
67 |
+
model
|
68 |
+
Chocolatine-14B-Instruct-4k-DPO 8.187500
|
69 |
+
Phi-3-medium-4k-instruct 7.987500
|
70 |
+
Chocolatine-3B-Instruct-DPO-Revised 7.962500
|
71 |
+
gpt-3.5-turbo 7.908333
|
72 |
+
Chocolatine-3B-Instruct-DPO-v1.0 7.650000
|
73 |
+
Daredevil-8B 7.487500
|
74 |
+
NeuralDaredevil-8B-abliterated 7.375000
|
75 |
+
Meta-Llama-3-8B-Instruct 6.981250
|
76 |
+
Phi-3-mini-4k-instruct 6.850000
|
77 |
+
Mistral-7B-Instruct-v0.3 6.625000
|
78 |
+
vigostral-7b-chat 6.475000
|
79 |
+
Mistral-7B-Instruct-v0.2 6.400000
|
80 |
+
```
|
81 |
+
|
82 |
+
### Usage
|
83 |
+
|
84 |
+
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb)
|
85 |
+
|
86 |
+
You can also run Chocolatine using the following code:
|
87 |
+
|
88 |
+
```python
|
89 |
+
import transformers
|
90 |
+
from transformers import AutoTokenizer
|
91 |
+
|
92 |
+
# Format prompt
|
93 |
+
message = [
|
94 |
+
{"role": "system", "content": "You are a helpful assistant chatbot."},
|
95 |
+
{"role": "user", "content": "What is a Large Language Model?"}
|
96 |
+
]
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(new_model)
|
98 |
+
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
|
99 |
+
|
100 |
+
# Create pipeline
|
101 |
+
pipeline = transformers.pipeline(
|
102 |
+
"text-generation",
|
103 |
+
model=new_model,
|
104 |
+
tokenizer=tokenizer
|
105 |
+
)
|
106 |
+
|
107 |
+
# Generate text
|
108 |
+
sequences = pipeline(
|
109 |
+
prompt,
|
110 |
+
do_sample=True,
|
111 |
+
temperature=0.7,
|
112 |
+
top_p=0.9,
|
113 |
+
num_return_sequences=1,
|
114 |
+
max_length=200,
|
115 |
+
)
|
116 |
+
print(sequences[0]['generated_text'])
|
117 |
+
```
|
118 |
+
|
119 |
+
### Limitations
|
120 |
+
|
121 |
+
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
|
122 |
+
It does not have any moderation mechanism.
|
123 |
+
|
124 |
+
- **Developed by:** Jonathan Pacifico, 2024
|
125 |
+
- **Model type:** LLM
|
126 |
+
- **Language(s) (NLP):** French, English
|
127 |
+
- **License:** MIT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|