Model save
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: openmmlab/upernet-convnext-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: upernet-convnext-small-finetuned
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# upernet-convnext-small-finetuned
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [openmmlab/upernet-convnext-small](https://huggingface.co/openmmlab/upernet-convnext-small) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.2874
|
19 |
+
- Mean Iou: 0.4231
|
20 |
+
- Mean Accuracy: 0.5343
|
21 |
+
- Overall Accuracy: 0.7437
|
22 |
+
- Accuracy Void: nan
|
23 |
+
- Accuracy Fruit: 0.8642
|
24 |
+
- Accuracy Leaf: 0.7167
|
25 |
+
- Accuracy Flower: 0.0
|
26 |
+
- Accuracy Stem: 0.5563
|
27 |
+
- Iou Void: 0.0
|
28 |
+
- Iou Fruit: 0.8605
|
29 |
+
- Iou Leaf: 0.7108
|
30 |
+
- Iou Flower: 0.0
|
31 |
+
- Iou Stem: 0.5440
|
32 |
+
- Median Iou: 0.5440
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 0.0006
|
52 |
+
- train_batch_size: 10
|
53 |
+
- eval_batch_size: 10
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem | Median Iou |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:|:----------:|
|
63 |
+
| 0.8456 | 1.0 | 575 | 0.3074 | 0.3946 | 0.4987 | 0.7054 | nan | 0.8110 | 0.6951 | 0.0 | 0.4888 | 0.0 | 0.8088 | 0.6852 | 0.0 | 0.4791 | 0.4791 |
|
64 |
+
| 0.3006 | 2.0 | 1150 | 0.2868 | 0.3945 | 0.4965 | 0.7227 | nan | 0.8533 | 0.7186 | 0.0 | 0.4139 | 0.0 | 0.8494 | 0.7139 | 0.0 | 0.4092 | 0.4092 |
|
65 |
+
| 0.3315 | 3.0 | 1725 | 0.2874 | 0.4231 | 0.5343 | 0.7437 | nan | 0.8642 | 0.7167 | 0.0 | 0.5563 | 0.0 | 0.8605 | 0.7108 | 0.0 | 0.5440 | 0.5440 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.38.0.dev0
|
71 |
+
- Pytorch 2.1.2+cu121
|
72 |
+
- Datasets 2.16.1
|
73 |
+
- Tokenizers 0.15.0
|