jssky commited on
Commit
aadc7da
1 Parent(s): 6a0208e

End of training

Browse files
Files changed (2) hide show
  1. README.md +164 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: fxmarty/tiny-llama-fast-tokenizer
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: e4b336e7-ad81-4eb7-b0b2-f60c4faf1a31
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: fxmarty/tiny-llama-fast-tokenizer
22
+ bf16: false
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - b91f9e23a399766c_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/b91f9e23a399766c_train_data.json
31
+ type:
32
+ field_input: tweet
33
+ field_instruction: conspiracy_theory
34
+ field_output: label
35
+ format: '{instruction} {input}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ devices:
42
+ - 0
43
+ - 1
44
+ - 2
45
+ - 3
46
+ - 4
47
+ - 5
48
+ - 6
49
+ - 7
50
+ early_stopping_patience: null
51
+ eval_max_new_tokens: 128
52
+ eval_table_size: null
53
+ evals_per_epoch: 4
54
+ flash_attention: true
55
+ fp16: true
56
+ fsdp: null
57
+ fsdp_config: null
58
+ gradient_accumulation_steps: 4
59
+ gradient_checkpointing: false
60
+ group_by_length: false
61
+ hub_model_id: jssky/e4b336e7-ad81-4eb7-b0b2-f60c4faf1a31
62
+ hub_repo: null
63
+ hub_strategy: checkpoint
64
+ hub_token: null
65
+ learning_rate: 0.0002
66
+ load_in_4bit: false
67
+ load_in_8bit: false
68
+ local_rank: null
69
+ logging_steps: 1
70
+ lora_alpha: 32
71
+ lora_dropout: 0.05
72
+ lora_fan_in_fan_out: null
73
+ lora_model_dir: null
74
+ lora_r: 16
75
+ lora_target_linear: true
76
+ lr_scheduler: cosine
77
+ max_steps: 10
78
+ micro_batch_size: 1
79
+ mlflow_experiment_name: /tmp/b91f9e23a399766c_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_epochs: 1
82
+ num_gpus: 8
83
+ optimizer: adamw_bnb_8bit
84
+ output_dir: miner_id_24
85
+ pad_to_sequence_len: true
86
+ resume_from_checkpoint: null
87
+ s2_attention: null
88
+ sample_packing: false
89
+ saves_per_epoch: 4
90
+ sequence_len: 4056
91
+ special_tokens:
92
+ pad_token: </s>
93
+ strict: false
94
+ tf32: false
95
+ tokenizer_type: AutoTokenizer
96
+ train_on_inputs: false
97
+ trust_remote_code: true
98
+ val_set_size: 0.05
99
+ wandb_entity: null
100
+ wandb_mode: online
101
+ wandb_name: e4b336e7-ad81-4eb7-b0b2-f60c4faf1a31
102
+ wandb_project: Gradients-On-Demand
103
+ wandb_run: your_name
104
+ wandb_runid: e4b336e7-ad81-4eb7-b0b2-f60c4faf1a31
105
+ warmup_steps: 10
106
+ weight_decay: 0.0
107
+ xformers_attention: null
108
+
109
+ ```
110
+
111
+ </details><br>
112
+
113
+ # e4b336e7-ad81-4eb7-b0b2-f60c4faf1a31
114
+
115
+ This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
116
+ It achieves the following results on the evaluation set:
117
+ - Loss: 10.3581
118
+
119
+ ## Model description
120
+
121
+ More information needed
122
+
123
+ ## Intended uses & limitations
124
+
125
+ More information needed
126
+
127
+ ## Training and evaluation data
128
+
129
+ More information needed
130
+
131
+ ## Training procedure
132
+
133
+ ### Training hyperparameters
134
+
135
+ The following hyperparameters were used during training:
136
+ - learning_rate: 0.0002
137
+ - train_batch_size: 1
138
+ - eval_batch_size: 1
139
+ - seed: 42
140
+ - gradient_accumulation_steps: 4
141
+ - total_train_batch_size: 4
142
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
143
+ - lr_scheduler_type: cosine
144
+ - lr_scheduler_warmup_steps: 10
145
+ - training_steps: 10
146
+ - mixed_precision_training: Native AMP
147
+
148
+ ### Training results
149
+
150
+ | Training Loss | Epoch | Step | Validation Loss |
151
+ |:-------------:|:------:|:----:|:---------------:|
152
+ | 10.35 | 0.0007 | 1 | 10.3619 |
153
+ | 10.3876 | 0.0020 | 3 | 10.3616 |
154
+ | 10.4118 | 0.0040 | 6 | 10.3603 |
155
+ | 10.4359 | 0.0060 | 9 | 10.3581 |
156
+
157
+
158
+ ### Framework versions
159
+
160
+ - PEFT 0.13.2
161
+ - Transformers 4.46.0
162
+ - Pytorch 2.5.0+cu124
163
+ - Datasets 3.0.1
164
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fe29529ffee0b0e3fa9c0876ada79aa72b774471d807eef0c9a91ed9dbed3a1
3
+ size 57218