File size: 3,655 Bytes
8fa921b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T
- cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
- cognitivecomputations/TinyDolphin-2.8.1-1.1b
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
base_model:
- TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T
- cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
- cognitivecomputations/TinyDolphin-2.8.1-1.1b
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
---

# Tiny-Llama-Llama-Dolphin-laser-1b-moe

Tiny-Llama-Llama-Dolphin-laser-1b-moe is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T)
* [cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser)
* [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b)
* [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)

## 🧩 Configuration

```yaml

base_model: cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
experts:
  - source_model: TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T
    positive_prompts:
    - "Write a Python script that sorts a list of integers using the bubble sort algorithm."
    - "Write a JavaScript function that redirects a web page to another page after 5 seconds."
    negative_prompts:
    - "Discuss the latest world events."
    - "Narrate a fictional story about a knight's quest."
  - source_model: cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
    positive_prompts:
    - "Describe the steps to troubleshoot a fluid dynamics issue with a water fountain."
    - "If we have 3 marbles, and two roll under the counter, and one is found, how many marbles are there?"
    negative_prompts:
    - "Tell me about your favorite book."
    - "Write a Python script that sorts a list of integers."
  - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
    positive_prompts:
    - "Write a short story about a knight's quest to find a lost treasure, and then summarize it in one paragraph."
    - "Summarize the following article with details and clarity."
    negative_prompts:
    - "Give me a sample of code in Rust."
    - "Describe the steps to troubleshoot a fluid dynamics issue."
  - source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
    positive_prompts:
    - "Tell me about your favorite book and why you like it."
    - "Chat with me about something I've been thinking of."
    negative_prompts:
    - "Write a Python script that sorts a list of integers."
    - "Summarize the following article with details and clarity."
gate_mode: hidden

```

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jtatman/Tiny-Llama-Llama-Dolphin-laser-1b-moe"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```