File size: 1,786 Bytes
1fb7fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: tmp9770t4k0
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# tmp9770t4k0

This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6629
- Train Accuracy: 0.7345
- Validation Loss: 1.4827
- Validation Accuracy: 0.5
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1305, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.3718     | 0.3908         | 1.2647          | 0.4381              | 0     |
| 1.0808     | 0.5330         | 1.2672          | 0.4742              | 1     |
| 0.6629     | 0.7345         | 1.4827          | 0.5                 | 2     |


### Framework versions

- Transformers 4.17.0
- TensorFlow 2.8.0
- Datasets 1.18.4
- Tokenizers 0.11.6